
TOSHIBA

TLCS-870 Family Language
Tools Operation Guide

4th Edition

Toshiba Corporation Semiconductor Company

(C)Copyright TOSHIBA Corporation 2007 All rights reserved

PA1E-03

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless,
the hardware and/or software incorporated in the TOSHIBA products listed in this document
(“TOSHIBA Products”) in general can malfunction or fail due to their inherent electrical sensitivity and
vulnerability to physical stress. It is the responsibility of the customer, when utilizing TOSHIBA
Products, to fully comply with the standards of safety in making safety design for the entire system,
and to avoid the situations in which a malfunction or failure of such TOSHIBA Products could cause
loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA Products are used within specified

operating ranges as set forth in the specifications for this product, the specifications for the
semiconductor devices under evaluation, and any other related information. Also, please keep in
mind the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook”
and “Instruction Manual” or “Operation Manual” that accompany this product and any devices
connected to this product.
Please always confirm the latest information of the TOSHIBA Products released on the web page of

microcomputer in the web site of TOSHIBA Semiconductor Company.
(http://www.semicon.toshiba.co.jp/eng/) (W01AE-01)

- The TOSHIBA Products are intended for usage in the functional evaluation of semiconductor

devices. TOSHIBA Products shall not be used for purposes other than functional evaluation, such as
for verification of device reliability. The TOSHIBA Products shall not be incorporated this product into
customer products. The TOSHIBA Products shall not be converted, disassembled, modified, or used
outside its specified operating range of the TOSHIBA Products listed in this document.

- The TOSHIBA Products are intended for the functional evaluation of semiconductor devices that are

designed for use in general electronics applications (e.g., computer, personal equipment, office
equipment, measuring equipment, industrial robotics, and domestic appliances). These TOSHIBA
Products are neither intended nor warranted for usage in equipment that requires extraordinarily high
quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily
injury (“Unintended Usage”).
Without limiting the generality of the foregoing, unintended Usage include atomic energy control

instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
combustion control instruments, medical instruments, and all types of safety devices. The TOSHIBA
Products shall not be used for Unintended Usage. (W02BE-01)

- The products described in this document shall not be used or embedded to any downstream

products of which manufacture, use and/or sale are prohibited under any applicable laws and
regulations. (W03AE-01)

- TOSHIBA does not take any responsibility for incidental damage (including loss of business profit,

business interruption, loss of business information, and other pecuniary damage) arising out of the
use or disability to use the product. (W04AE-01)

- The information contained herein is presented only as a guide for the applications of our products.

No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third
parties which may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of TOSHIBA or others. (W06AE-01)

- The names of the companies, the systems and the products described in this document may be the

trademarks of each company. (W07AE-01)

-

 The information contained herein is subject to change without notice. (W11AE-01)

 Preface

i

Preface
Thank you for using Toshiba microcomputer products.
This manual describes how to use the microcomputer development system product you

have purchased. Please keep this manual to hand when you use the product.
Toshiba will continue to make every effort to improve our products to better meet the

needs of our customers. We will highly appreciate your continued patronage of Toshiba
microcomputer products also in future.

- Microsoft®, Windows®, Windows® 2000, and Windows® XP are either
registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

- System names and product names are trademarks or registered trademarks of their
respective owners.

prefaceE-02

Preface

ii

Technical support
The "readme.txt" file is included with the product package to help you use this product.

If you have any further questions regarding the content of this manual, please do not
hesitate to contact your local Toshiba sales representative.

 Our technical support service is available if you encounter any phenomenon that
seems to be faulty while using this product. At your request we will investigate the cause
of the phenomenon and report back to you. To use this service, you need to provide us
with the data that enables us to reproduce the phenomenon, such as the operation
procedure, etc. Please note that we may not be able to deal with a phenomenon that cannot
be reproduced.

 Preface

iii

Internet Information Service
The latest information on Toshiba microcomputer development

system products is available on "Toshiba Microcomputer Development
System Website" at:

http://www.semicon.toshiba.co.jp/mctool/index_e.htm

You can find the following information and more on this Website.

- Topics
- Product Release Schedule
- Product Introduction
- Latest Versions
- FAQ for Prospective Customers
- Product List for Each MCU

http://www.semicon.toshiba.co.jp/mctool/index_e.htm

Preface

iv

 Contents

v

Contents

Part 1 Getting Started---1

Chapter 1 Setting Up Execution Environment --------------3
Part 2 Tools ---5

Chapter 1 CC Driver--7
1.1 Introduction -- 7
1.2 Startup command -- 7
1.3 Input Files -- 8
1.4 Output files --- 9
1.5 List of Options --- 9
1.6 Example Commands ---11

Chapter 2 Assembler-- 13
2.1 Introduction ---13
2.2 Startup command ---13
2.3 Input Files ---13
2.4 Output Files ---13
2.5 List of Options --14
2.6 Example Commands ---14

Chapter 3 Linker -- 15
3.1 Introduction ---15
3.2 Startup command ---15
3.3 Input Files ---15
3.4 Output Files ---16
3.5 List of Options --17
3.6 Example Commands ---17

Chapter 4 Macro Preprocessor ------------------------------- 18
4.1 Introduction ---18
4.2 Startup command ---18
4.3 Input Files ---18
4.4 Output Files ---19
4.5 List of Options --19
4.6 Example Commands ---20

Chapter 5 Librarian--- 21
5.1 Introduction ---21
5.2 Startup command ---21
5.3 Input Files ---22

Contents

vi

5.4 Output Files--- 22
5.5 List of Options-- 22
5.6 Example Commands--- 23

Chapter 6 Object Converter----------------------------------- 25
6.1 Introduction --- 25
6.2 Startup command--- 25
6.3 Input Files--- 25
6.4 Output Files--- 26
6.5 List of Options-- 26
6.6 Example Commands--- 27

Part 3 Option Details -- 29

Chapter 1 Rules for Specifying Options--------------------- 31
Chapter 2 Conventions Used in Option Descriptions----- 33
Chapter 3 Details of Options ---------------------------------- 34

-# Display Path and Options---------------------------------- 34
-A Compiles in accordance with ANSI specification ----- 35
-D Define Macro--- 36
-E Preprocessor Output --------------------------------------- 37
-F Fill Value -- 38
-F Select Object Format--------------------------------------- 39
-I Directories for Input Files --------------------------------- 40
-J Select Kanji Mode (Japanese version only) ------------- 41
-L Directories for Input Files--------------------------------- 42
-Mi No Macro Processing ------------------------------------ 43
-Nc Select Memory Style(TLCS-870/C,C1 only) --------- 43
-O Select Optimization Level -------------------------------- 44
-P Run Preprocessor Only ------------------------------------ 45
-P Fill Value -- 46
-S Create Assembly Source ---------------------------------- 46
-T Set Environment Variable--------------------------------- 47
-U Undefine Macro-- 48
-V Output Version Number ---------------------------------- 49
-W Pass Options to Tool -------------------------------------- 49
-XE Ignore Escape Sequence -------------------------------- 50
-XF No Deletion of Assembler Source --------------------- 51
-XS Code Size Optimization --------------------------------- 51
-Xec Change Type of Enumeration Constant---------------- 52
-Xi Run Macro Processor------------------------------------- 53

 Contents

vii

-Xns Integration of Stack Freeing -----------------------------53
-Xr Set Default Function Modifier (__adecl) --------------54
-Xub Select Unsigned Characters ----------------------------55
-Xuc Select Unsigned Characters ----------------------------55
-Xw Change bit field assignment order ---------------------56
-ZA -ZC -ZD -ZT Set Default Section Size ----------------57
-Za -Zc -Zd -Zi -Zt Set Default Section Name -------------58
-c Create Object but not Link---------------------------------59
-c Specify a comment--59
-d Delete a Module---60
-e Create Error List File ---------------------------------------60
-f Read Option from a File ------------------------------------61
-g Create Debugger Information at assemble phase -------62
-g Create Debugger Information at linking phase----------63
-l Create List File---64
-l Output Module Symbol Information----------------------66
-m Select Memory Model(TLCS-870/X only) -------------67
-o Set Output Filename--68
-r Select Incremental Linking---------------------------------69
-r Replace Modules --70
-ra Object Output Range by address specification---------72
-rb Object Output Range by section specification ---------73
-s Define SET Symbol---74
-t Output Module List ---74
-u Delete All Predefined Macros-----------------------------75
-u Record Undefined Symbol---------------------------------75
-w Select Warning Level --------------------------------------76

Part 4 Formats-- 77

Chapter 1 Assembler List Format---------------------------- 79
1.1 Assemble List ---79
1.2 Symbol List Format --80

Chapter 2 Linker List Format -------------------------------- 83
Chapter 3 Object Format -------------------------------------- 85

3.1 Intel Format ---85
3.2 Motorola S Format ---86

Part 5 Error Messages -- 87

Chapter 1 Error Messages ------------------------------------- 89
1.1 Types of Error Message ---89

Contents

viii

1.2 Error Message Format--- 89
Chapter 2 Driver Error Messages ---------------------------- 90

2.1 Fatal Errors of Drivers--- 90
2.2 Warning Errors of Drivers -- 91

Chapter 3 C Compiler Error Messages --------------------- 91
3.1 Fatal Errors of C Compilers -------------------------------------- 91
3.2 Errors of C Compilers --- 93
3.3 Warnings of C Compiler ---106

Chapter 4 Assembler Error Messages --------------------118
4.1 Assembler Fatal Errors ---118
4.2 Assembler Errors--120
4.3 Assembler Warning Errors --------------------------------------122

Chapter 5 TULINK Error Messages ----------------------123
5.1 TULINK Fatal Errors---123
5.2 TULINK Errors ---127
5.3 TULINK Warning Errors --129

Chapter 6 TUMPP Error Messages -----------------------131
6.1 TUMPP Fatal Errors--131
6.2 TUMPP Errors --133
6.3 TUMPP Warning Errors ---136

Chapter 7 TULIB Error Messages-------------------------138
7.1 TULIB Fatal Errors ---138
7.2 TULIB Errors--140

Chapter 8 TUCONV Error Messages ---------------------141
8.1 TUCONV Fatal Errors ---141
8.2 TUCONV Warning Errors ---------------------------------------143

Appendix --145

Appendix A System Flow --------------------------------------147
Appendix B History ---148

Part 1 Getting Started

 Chapter 1 Setting Up Execution Environment

3

Chapter 1 Setting Up Execution Environment
When using command line by the Command-Prompt of MS-Windows, it

is necessary to perform the following environmental setup.
 [THOMExxx] � Set the home directory (the directory in which the software programs

have been installed). The environment variables THOME and
THOMExxx are used to set the home directory.

 (*) THOMExxx is as follows:
 THOME870C TLCS-870/C,C1 Series
 THOME870X TLCS-870/X Series
 THOME870 TLCS-870 Series

These environment variables are used for
 The driver starts up each program

 Searches for standard include files
 [PATH] � Set the bin directory in the directory where the software programs

have been installed.
 [TMP] � Set the work directory for the programs. (Programmer can specify

arbitrary directory to environment variables TMP.)
 [NOTE] � If the specified work directory is nonexistent or does not have

sufficient space, an error may occur when executing the program.
 [Example] � When software installs in C:\TOSHIBA directory, the method of

setting up an environment variables with a command line is as
follows.

C>set THOME870C=c:\toshiba
C>set TMP=c:\work
C>path=c:\toshiba\bin

 [NOTE] Do not insert spaces before and after the equal sign (=).

Select [My Computer]-[Control Panel]-[System]-[Advanced]-
[Environment Variables] when using Windows; then set the following
environment variables as either system environment variables or user
environment variables according to the usage.

path “C:\Program Files\TOSHIBA\T870C\bin”
THOME870C C:\Program Files\TOSHIBA\T870C

Part 1 Getting Started

4

Part 2 Tools

 Chapter 1 CC Driver

 7

Chapter 1 CC Driver

1.1 Introduction

CC Driver controls the whole C Compiler process.
� Create an absolute object file from the specified source files in C and

in assembly language.
� Link one or more relocatable files with standard C library files and

other routines required for the C program to run to create an
executable absolute object file for the target system.

� When compiling the C program, CC Driver activates each of the
following programs in sequence:
� Parser
� Code generator
The above sequence creates an assembler source file.
� Assembler
The above creates a relocatable object file.
� Linker
The Linker links the relocatable object files with a library to create an
absolute object file.

 Note � The link command file and the start up routine must be specified by
user.

� The parser and code generator cannot be run independently of CC
Driver.

1.2 Startup command

 Command <cc_driver_name> [<option_list>] <source_filename_list>

 Description � Specify [<option_list>] delimited with spaces.
� Specify filenames delimited with spaces in the source filename list.
� See the Part3, Chapter3 for details of options.
� CC Driver are provided for the each MCU. The names of the drivers

are as follows:
MCU CC Driver Names
TLCS-870/X Series cc870x
TLCS-870 Series cc870
TLCS-870/C,C1 Series cc870c

Part 2 Tools

8

1.3 Input Files

CC Driver determines the type of file and the appropriate process to
perform from the filename extension. Following table shows the types of
input files processed by CC Driver and the filename extensions used by the
driver to determine which process is applicable.

Extension Type of input file
.c C language source file
.i C language source file

(output from Macro Preprocessor)
.mac Macro Preprocessor source file
.asm Assembler source file
.rel Relocatable object file
.lib Library file
.lcf Link command file

The following describes how CC Driver processes the respective input files.
� C language source files

Compiles C language source files to create a relocatable object file,
which is linked with other files.

� Macro Preprocessor source files
Activates Macro Preprocessor and Assembler to create a relocatable
object file, which is linked with other files.

� Assembler source files
Activates Assembler to create a relocatable object file, which is linked
with other files.

� Relocatable object files
These files are passed to the Linker during linking.

� Library files
These files are also passed to the Linker during linking

� Link command files
These files are passed as the command files to the Linker.

� Unidentifiable files
Files with extensions not listed above, or files without extensions, are
all passed to the Linker.

 Chapter 1 CC Driver

 9

1.4 Output files

The files output by each of the tools activated by CC Driver take names
with the extensions shown as follows: If a filename is specified using the
option for specifying the name of an output file, the output file is created
with the specified filename.

Extension Type of output file
.i Macro Preprocessor output file (-P option specified)
.asm Assembler source file (-S option specified)
.lst Assembler list file (-l option specified)
.rel Relocatable object file
.abs Absolute object file
.map Link map file (-l option specified)

1.5 List of Options
Option Function

-# Display Path and Options
-A Compilers in accordance with ANSI specification
-D Define Macro
-E Preprocessor Output
-F Fill Value
-I Directories for Include Files
-J Select Kanji Mode (Japanese version only)
-L Directories for Input Files
-Mi No Macro Processing
-Nc Select Memory Style(TLCS-870/C,C1 only)
-O Select Optimization Level
-P Run Preprocessor Only
-S Create Assembler Source
-T Set Environment Variable
-U Undefine Macro
-V Output Version Number
-W Pass Options to Tool
-XE Ignore Escape Sequence
-XF No Deletion of Assembler Source
-XS Code Size Optimization
-Xec Specify Default Function Qualifier
-Xi Run Macro Processor
-Xns Suppress Optimization (Integration of Stack Freeing)
-Xr Set Default Function Modifier (_adecl)
-Xub Select Unsigned Bit FIeld Members
-Xuc Select Unsigned Characters
-Xw Change bit field assignment order
-ZA Set Default Section Size (area)

Part 2 Tools

10

-ZC Set Default Section Size (const)
-ZD Set Default Section Size (data)
-ZT Set Default Section Size (code)
-Za Set Default Section Name (area)
-Zc Set Default Section Name (const)
-Zd Set Default Section Name (data)
-Zi Set Default Section Name (io)
-Zt Set Default Section Name (code)
-c Create Object but do not Link
-e Create Error List File
-f Read Options from a File
-g Create Debugger Information at assemble phase
-g Create Debugger Information at linking phase
-l Create List File
-m Select Memory Model (TLCS-870/X only)
-o Set Output Filename
-s Define SET Symbol
-u Delete All Predefined Macros
-u Record Undefined Symbol
-w Select Warning Level

 Chapter 1 CC Driver

 11

1.6 Example Commands

 Example Compiling a single source file

cc870c -Nc1 s1.c startup.rel sample.lcf

The C Compiler compiles the C language source file 's1.c', creates an
assembler source file, assembles it, and creates a relocatable object file.
Subsequently, CC driver links with the start up program(startup.rel) and
standard library according to the link command file(sample.lcf). Thus the
absolute object file is created. The absolute object file takes the name
's1.abs' comprised of the name of the original C language source file (s1.c)
with extension '.abs'. The relocatable object file is retained even after final
compiling. The assembler source file created during the compiling process
is deleted unless the '-S' option is specified.

 Example Compiling multiple source files

cc870c -Nc1 s1.c s2.c s3.c startup.rel sample.lcf

The C Compiler compiles and assembles the three C language source files
's1.c', 's2.c' and 's3.c'. Subsequently, CC driver links with the start up
program and standard library according to the link command file. Thus the
absolute object file ‘sl.abs’ is created. The absolute object file takes the
name 's1.abs', which is comprised of the name of the first specified file on
the command line as input files with extension '.abs'.

 Example Compiling files with different extensions

cc870c -Nc1 -os8.abs s1.c s2.c s3.c s4.asm s5.rel s6.lib

s7.lcf

The C Compiler compiles and assembles 's1.c', 's2.c', and 's3.c', and
assembles 's4.asm'. Subsequently, CC driver links with five relocatable
object files of ‘sl.rel’-’s5.rel’, the library file ‘s6.lib’ and standard library
according to the link command file ‘s7.lcf’. The name of the created
absolute object file is 's8.abs' (- os8.abs).

Part 2 Tools

12

 Example Compile and assemble only. Create a file of error messages.

cc870c -Nc1 -c -e errorlst.err s1.c s2.c s3.c

This command line compiles and assembles the source files (-c) and creates
a file of only error messages (errorlst.err) (-e errorlst.err).

 Example Creating a file with information for source level debugging.

cc870c -Nc1 -g s1.c s2.c s3.c

This command line compiles the 3 source files, assembles, and links the
appropriate modules and creates the absolute object file 's1.bas' with
information for source level debugging (-g).

 Example Setting preprocessor macros and an include file search path.

cc870c -Nc1 -D ROOT -D CASE=2 -I /usr/inc s1.c s2.c s3.c

This command line compiles, assembles, and links the source files. The files
are compiled after setting the preprocessor macros (-D ROOT -D CASE=2)
and the include file search path (-I/usr/inc).

 Chapter 2 Assembler

 13

 Chapter 2 Assembler

2.1 Introduction

� Assembler converts assembly language programs into relocatable
object programs.

2.2 Startup command

 Command <assember_name> [<option_list>] <source_filename>

 Description � Specify commands, options, and the name of a source file delimited
with spaces.

� See the Part3, Chapter3 for details of options.
� Specify only one source program.
� Assembler is provided for each MCU. The names of Assemblers are

follows:
MCU Assembler
TLCS-870/X Series asm870x
TLCS-870 Series asm870
TLCS-870/C Series asm870c

2.3 Input Files
Extension File type
.asm Assembly language file

� Assembler processes files containing source statements written in
assembly language.

2.4 Output Files
Extension File type
.rel Relocatable object file
.lst Assemble list file

� Relocatable object files are the result of assembling. These files are in
binary format conforming to IEEE695.

� Assemble list files include the assemble list, symbol list, cross-
reference list, etc. The -l option must be specified for these files to be
output.

Part 2 Tools

14

2.5 List of Options
Option Function

-I Directories for Include Files
-J Select Kanji Mode (Japanese version only)
-O Select Optimization Level
-V Output Version Number
-XE Ignore Escape Sequence
-Xt Syntax Check Only
-e Create Error List File
-f Read Options from a File
-g Create Debugger Information at assemble phase
-l Create List File
-o Set Output Filename
-w Select Warning Level

2.6 Example Commands

 Example Assemble a source file
asm870C sample.asm

Assembler processes the assembler source file 'sample.asm' and outputs an
object file 'sample.rel'.

 Example Assemble a source file and output an assemble list
asm870C -lx sample.asm

This command outputs the object file 'sample.rel' and the assemble list file
'sample.lst'. The list includes a cross-reference (-lx).

 Example Assemble, but create only an error message file

asm870C -e errorlst.err -Xt -I/usr/inc sample.asm

This command creates the error message file 'errorlst.err' (-eerrorlst.err)
without creating the object file or assemble list file. The assembling is
executed after setting the search path for include files (-I/usr/inc).

 Chapter 3 Linker

 15

Chapter 3 Linker

3.1 Introduction

The linker links the multiple relocatable object files created by compiling
and assembling separate modules of a program. The linker also allocates the
modules to memory and creates an absolute object file.
� All sequences performed in linking are specified using a Link

Command file. The Link Command file allows details such as the
following to be specified.
� Specify the target memory configuration
� Specify the order in which sections are linked
� Specify the address sections are to be allocated to and the

address range
� Define and redefine public symbols.

� The required library modules are extracted from library files during
linking.

� Special attributes can be applied to sections, such as "no substance" or
"overlay".

3.2 Startup command

 Command tulink [<option_list>] <file_list>

 Description � Specify commands, option list, and the file list delimited with spaces.
� See the Part3, Chapter3 for details of options.

3.3 Input Files
Extension File type

.rel Relocatable object files

.lib Library files

.lcf Link Command files

� Relocatable object files
These object files, which are relocatable object modules, are input and
output by the linker. The symbols in these modules are assigned
relative addresses from the beginning of each section. Some external
symbols, however, remain without addresses. The relocatable object
files are binary data files conforming to the IEEE695 format.

Part 2 Tools

16

� Library files
The library files consist of multiple relocatable modules collected into
one by the Librarian (TULIB). The required modules are extracted
from these files during linking. They are binary data files conforming
to the IEEE695 format.

� Link Command files
These text files contain entries specifying the linking sequence and
allocation of memory. The linker reads the Link Command file and
performs the linking according to its content.

3.4 Output Files
Extension File type

.abs Absolute object files
.map Link MAP files

� Absolute object files
The absolute object files are output by the linker. The internal and
external symbols in these modules have absolute addresses assigned to
them and the modules can therefore be written to ROM. These files
are binary data files conforming to the IEEE695 format.

� Link MAP files
The link MAP files are text files output by the linker and containing
information gained from the linking process. They include
information about sections after they have been linked, on symbols,
and on errors.

 Chapter 3 Linker

 17

3.5 List of Options
Option Function

-F Fill Value
-L Directories for Input Files
-T Set Environment Variable
-V Output Version Number
-e Create error list file
-g Create Debugger Information at linking phase
-l Create List File
-o Set Output Filename
-r Select Incremental Linking
-u Record Undefined Symbol
-w Select Warning Level

3.6 Example Commands

 Example Link 'sample1.rel' and 'sample2.rel' according to memory mapping, etc., in
the link command file 'sample.lcf'.
tulink sample.lcf sample1.rel sample2.rel

If no link command file stipulating memory allocation is specified, the
linker starts allocating memory from address 0.

 Example As above, but the names of input files are specified in the link command file
'sample.lcf'.
tulink sample.lcf

 Example As above, but null output sections, if they exist, are filled with zeros.
tulink -F0x0000 -lg -lm -ll sample.lcf

A link list is also output (-l). The link list contains public symbols (-lg),
local symbols (-ll), and a link map (-lm).

Part 2 Tools

18

Chapter 4 Macro Preprocessor

4.1 Introduction

Macro Preprocessor provides a macroprocess function and preprocess
function. A processing target of Macro Preprocessor is a source file which is
described using Macro Preprocessor language. A part except it merely is
just copied to an output file. Firstly, Macro Preprocessor processes
preprocessing directive. After that, it processes macroprocessing directive.

4.2 Startup command

 Command tumpp [<option_list>] <source_filename>

 Description � Specify commands, options, and the name of a source program
delimited with spaces.

� See the Part3, Chapter3 details of options.
� Specify only one source program.

4.3 Input Files

Following table shows the extensions used in the names of input files of
Macro Preprocessor.
Extension File type

.mac Macro Preprocessor source file

� Macro Preprocessor source file is source file which is described using
Macro Preprocessor language.

 Chapter 4 Macro Preprocessor

 19

4.4 Output Files

Following table shows the extensions used in the names of output files of
Macro Preprocessor.
Extension File type

.asm Assembler source file

.med Macro preprocessor list file

� Assembler source file is source file which processing result of Macro
Preprocessor.

� Macro Preprocessor list file is list file which includes input source
file, processed result, symbol list, cross reference.

4.5 List of Options
Option Function

-D Predefine name as a macro
-GN Set the file name which used for error message
-I Specify the search path of include file
-J Enables SJIS character
-U Cancel any previous definition of name
-V Show version number
-e Create error message file
-f Read specified option file
-g Process debugging information
-l Output Macro preprocessor list file
-mf Specify the list file name
-ms Specify the expanding history to simple
-o Specify the output file name
-s Specify the variable name and the value

Part 2 Tools

20

4.6 Example Commands

 Example Preprocessing and macroprocessing to a source file.
tumpp sample.mac

The Macro preprocessor source file ‘sample.mac’ is processed with Macro
Preprocessor, and Assembler source file ‘sample.asm’ is outputted.

 Example Outputting a macro preprocessor list file.
tumpp -l sample.mac

This command outputs Assembler source file ‘sample.asm’ and macro
preprocessor list file ‘sample.med’.

 Example Performs macro preprocessing and outputs an error message file

tumpp -e errorlst.err sample.mac

The error messages are output to the file 'errorlst.err' (-e errorlst.err).

 Example Setting macro perprocessor macros and search path for include files and
macro library

tumpp -s MACROID=2 -I/usr/inc sample.mac

This command sets Macro preprocessor macros (-s MACROID=2), the
search path for the include files, and Macro library (-I/usr/inc) and executes
macro processing.

 Chapter 5 Librarian

 21

 Chapter 5 Librarian

5.1 Introduction

The librarian is a utility that collects the object files created for
individual functions by the compiler and assembler into one file for easier
management.
� Those object files that make up a program and which have been

completed and will undergo no further change can be cataloged in a
library file. This library file can then be specified at linking for the
linker to automatically extract and link the required modules.

� Collecting general-purpose modules in a library file can facilitate the
development of other programs.

� The librarian has the following functions:
� Creation of library files
� Cataloging modules in library files
� Deletion of modules from library files
� Updating modules in library files
� Display symbol information from a modules in library files.
� List names of modules in library files

5.2 Startup command

 Command tulib [<option_list>] <library_filename>[<module_list>]

 Description � Specify commands, options, library file names and module lists
delimited with spaces.

� Always specify one and only one of the following options.
 '-d' '-l' '-r' '- t'.

� See the Part3, Chapter3 for details of options.
� Specify only one library file.
� Specify the modules to be processed by options in the module list.

Part 2 Tools

22

5.3 Input Files
Extension File type

.lib Library files

.rel Relocatable object files
� Library files

The whole library or modules in the library can be extracted and
recorded and updated in the output library file.

� Relocatable object files
Relocatable object files output by the compiler or assembler are the
input files for the librarian. The contents of such object files are
recorded in the library file as modules.

5.4 Output Files
Extension File type

.lib Library files
� Library files

Library files are created by linking multiple object modules in a
special format. The librarian catalogs, updates, and deletes modules in
a library file.

5.5 List of Options
Option Function

-T Set Environment Variable
-V Output Version Number
-d Delete a Module
-f Read Options from a File
-l Output Module Symbol Information
-r Replace Modules
-t Output Module List

Some of the option parameters specifying processing of the library file can
take the following sub options.

Sub Target Function
c -r Suppresses message output
u -r Updates only recent modules
v -d -r -t Outputs details of librarian processing
w -r Updates only recent modules (newer than modules in LIB file)

 Chapter 5 Librarian

 23

5.6 Example Commands

 Example Collect 'sample1.rel', 'sample2.rel', and 'sample3.rel' in new library file
'sample.lib'.
tulib -r sample.lib sample1.rel sample2.rel sample3.rel

This command creates a new library file, 'sample.lib'.

 Example Add 'sample4.rel' to library file 'sample.lib' and replace 'sample3.rel'.
tulib -rv sample.lib sample4.rel sample3.rel

Option '-rv' sends the newly recorded and updated module names to
standard output.

 Example Replace or add 'sample1.rel' in library file 'sample.lib'.
tulib -rvu sample.lib sample1.rel

Option '-ru' updates 'sample1.rel' only when it is later than the one in the
library file.

 Example Outputs a list of modules in an updated library file.
tulib -tv sample.lib

The module list is output as follows:
module1 279 relocatable Mar 07 22:05 1992

module2 426 relocatable Mar 07 22:02 1992

module3 158 relocatable Mar 07 22:03 1992

module4 353 relocatable Mar 07 22:04 1992

Option '-tv' displays the size and creation date in addition to the name of the
module.

Part 2 Tools

24

 Example Delete 'module2' (sample2.rel) and 'module3' (sample3.rel) from library file
'sample.lib'.
tulib -d sample.lib module2 module3

After deletion, modules 'module1' (sample1.rel) and 'module4' (sample4.rel)
remain in the library file.

 Example Output information on the symbols in the remaining modules, 'module1'
(sample1.rel) and 'module4' (sample4.rel).
tulib -l sample.lib module1 module4

The output symbol list is as follows:

MODULE INFORMATION

Name Size Type

module1 279

module4 353

PUBLIC SYMBOL(S) :

module1 init

module4 table

EXTERN SYMBOL(S)

module1 No Symbol

module4 calc

 init

Here, the information is the same for all modules in the library file. The
same result would therefore be gained from the following command.
tulib -l sample.lib

 Chapter 6 Object Converter

 25

Chapter 6 Object Converter

6.1 Introduction

The object converter is a utility for converting the absolute object files
output by the linker into an object format usable by an EPROM writer.
� The user can select from five object formats: Intel HEX format, Intel

extended HEX format, and Motorola S format (in 16-bit addressing,
24-bit addressing, and 32-bit addressing).

� Intel and Motorola format comments can be embedded.

6.2 Startup command

 Command tuconv [<option_list>] <abs_object_filename>

 Description � Specify commands, options, and object file names delimited with
spaces.

� See the Part3, Chapter3 for details of options.
� Intel HEX format is selected if no output object format is specified.
� The output object file can be divided into two or more files.
� Default format is the Intel HEX format.
� Specify only one absolute object file.

6.3 Input Files
Extension File type

.abs Absolute object file
� Absolute Object Files (Input)

Absolute object files are output by the linker. These modules contain
local and public symbols with absolute addresses and can be written to
ROM. These files are binary data files in the IEEE695 format.

Part 2 Tools

26

6.4 Output Files
Extension File type Classification

.h16 Intel HEX Output

.h20 Intel Extended HEX Output

.s16 Motorola S Format (16-bit addressing) Output

.s24 Motorola S Format (24-bit addressing) Output

.s32 Motorola S Format (32-bit addressing) Output
.o00 - .off Overlay file Output

Use defined Object converter list file Output
� Object converter list file (output)

Object converting information such as section allocations for the
respective output object files is output. To output this file, the file
name must be specified with option ‘-If’. Using option ‘-I’ outputs
the information to the console.

6.5 List of Options
Option Function

-F Select Object Format
-P Fill Value
-T Set Environment Variable
-V Output Version Number
-c Specify a comment
-e Create error list file
-f Read Options from a File
-l Create List File
-o Set Output Filename
-ra Set Object Output Range (address specification)
-rb Set Object Output Range (section specification)

 Chapter 6 Object Converter

 27

6.6 Example Commands

 Example

tuconv sample.abs

This command processes the linked absolute object file 'sample.abs' to
output an object file 'sample.h16' in Intel HEX format.

 Example

tuconv -Fh20 -cc This_is_sample sample.abs

This command outputs the absolute object file 'sample.h20' in extended
HEX format. The following comment is appended to the file header:
:This_is_sample

 Example

tuconv -Fs24 -ra 0x0000,0x8000,,sample1.s24

-ra 0x14000,0x4000,+0x14000,sample2.s24 sample.abs

This command outputs 32K byte(-ra 0x0000, 0x8000) to an object file '
sample l.s24' of 24-bit Motorola S format from address 0x0000.
Subsequently, it adds 16K byte(-ra 0x14000, 0x4000) and +0x14000
offset(+0x140000)(the address is 0x28000) from address 0x14000 and
outputs that to an object file 'sample2.s24' of 24-bit Motorola S format.
When the offset(+0x140000) is added, data address field(address field of
branch instruction and CALL instruction) that is originally based on
0x14000 is not converted according to address 0x28000. It simply adds
0x14000 to the address field of the S-format.

 Example

tuconv -Fs24 -l -rb sectionA,0x1000,,final.s24 sample.abs

This command outputs 4K byte(0x1000) to an object file 'final.s24' in 24-bit
Motorola S format(-Fs24) from the start address of section A. In addition,
the converting information such as output file mapping section is output to
the console(-I).

Part 2 Tools

28

 Example

tuconv -Fs24 -rb sectionA,,,final.s24 sample.abs

This command outputs the whole section A to an object file 'final.s24' in 24-
bit Motorola S format(-Fs24).

 Example

tuconv -Fs24 -rb sectionA,0x3000,,final1.s24

-rb sectionB,0x1000,,final2.s24 sample.abs

This command outputs 12K byte(0x3000) to an object file 'final l.s24' in 24
bit Motorola S format (-Fs24) from the start address of section A.
Subsequently, it outputs 4K byte(0x1000) to an object file 'final 2.s24' of 24
bit Motorola S format (-Fs24) from the start address of section B. If some
section other than section A and B is included within the specified size, this
command is not output. Similarly, the section with OVERAY attribute is not
output.

 Example

tuconv -P 0x8000,0x1000,0x00, sample.abs

This command outputs 4K byte(0x1000) to an object file 'sample.h16' in
Intel HEX format from address 0x8000.(The output file name is omitted
with -P.) The empty area with no object is filled with 0x00 in -P option.

 Example

tuconv -Fs24 -lf cv.cnv -ra 0x0000,0x8000,+0x1000,sample1.s24

-rb sectionA,,0x0000,sample2.s24

-P 0x0000,0xffff,0x00,sample1.s24 sample.abs

This command adds 32K byte(0x8000) and +0x1000 offset and outputs to
an object file 'sample l.s24' in 24-bit Motorola S format(-Fs24) from address
0x000. In -P option, the output range is 64K byte from 0x0000 to 0xffff.
The empty area with no object is filled with 0x00 in -ra option.
Subsequently, it outputs the start address 0x0000 of section A to
'sample2.s24'. The converting information such as mapping sections and
padding area address information for the respective output files is output to
list file 'cv.cnv.'(-If cv.cnv) At this time, the converting information is never
output to the console.

Part 3 Option Details

 Chapter 1 Rules for Specifying Options

 31

Chapter 1 Rules for Specifying Options
 Rules � Specify options as alphabetical letters following a hyphen (-).

� A distinction is made between uppercase and lowercase letters.
cc870c -Nc1 -F0x00 -Ffilname.cmd filename.c Incorrect
cc870c -Nc1 -F0x00 -ffilname.cmd filename.c Correct

� When specifying two or more options, delimit the options with spaces.

cc870c -Nc1 -cD MACRO_NAME filname.c Incorrect
cc870c -Nc1 -c -D MACRO_NAME filename.c Correct

� When an option is specified with a string such as a filename, the

option and string can be separated with a space, but the space is not
mandatory.

cc870c -Nc1 -D MACRO_NAME filname.c Correct
cc870c -Nc1 -DMACRO_NAME filename.c Correct

� When a numerical value follows an option, do not separate the option

from the numerical value with a space.
cc870c -Nc1 -O 2 filname.c Incorrect
cc870c -Nc1 -O2 filename.c Correct

� When a suboption follows an option, do not separate the option and

suboption with a space.
cc870c -Nc1 -l s filname.c Incorrect
cc870c -Nc1 -ls filename.c Correct

Part 3 Option Details

32

� When specifying multiple suboptions, do not separate the main option
from the suboptions or the suboptions from each other with spaces.

cc870c -Nc1 -lsxw80 filname.mac s, x, and w are
suboptions.
cc870c -Nc1 -ls -lx -w80 filename.mac This is the same as the

above.

� When a suboption takes an argument, delimit the suboption and

argument with a space.
cc870c -Nc1 -lffilename.lst filname.mac Incorrect
cc870c -Nc1 -lf filename.lst filename.mac Correct

� When the same options are specified, the first option is effective.

cc870c -Nc1 -lw180 -lw100 filname.mac -lw80 is effective

� Options between square brackets ([]) in the manual are optional.

cc870c -Nc1 -w2 filname.mac Correct
cc870c -Nc1 -w filename.mac Correct, -w is not necessarily the same as -

w2.

 Chapter 2 Conventions Used in Option Descriptions

 33

Chapter 2 Conventions Used in Option Descriptions

 Target tool CC ASM LINK LIB CONV

 x x * - x

 Description � The following shows the relationship between symbols and tools:

CC CC Driver (CC870C, etc.)
ASM Assembler (ASM870C, etc.)
LINK Linker (TULINK,etc.)
LIB Librarian (TULIB)
CONV Object converter (TUCONV)
See the Assembler Language Reference for details of Macro
Preprocessor(TUMPP) option.

� The symbol under the target tool has the following meaning:
x : Shows that the option is valid
* : Shows the option can be specified, but that the function is

valid for another tool, passed on to the appropriate tool.
- : Shows that the option cannot be specified.

The following section details each option and its parameters in
alphabetical order.

Part 3 Option Details

34

Chapter 3 Details of Options

-# Display Path and Options

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -#

 Function Displays the compiling or assembling process.
 Description � When the driver performs compiling and assembling, this option

displays in sequence which tools are used, in what order, and with
what options they were activated.

� Compiling and assembling are not actually performed.
 Example cc870c -Nc1 -# file1.c file2.c

With the 'cc870C file1.c file2.c' command line, it is possible to check which tool is

activated with which option(s). Some options are automatically added by the driver. This

option allows the user to check which options are added.

 Chapter 3 Details of Options

 35

-A Compiles in accordance with ANSI specification

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -A

 Function Compiles in accordance with ANSI specification.
 Description � In the default value of C compiler, the following two items do not

apply correspondingly to ANSI specification.
Integral promotion
Arithmetic conversion for multiplication, division

The -A option allows compiling in accordance with ANSI
specification.

� It is recommended that the -A option is used to write a program
which has an effective portability.

 Example cc870C –Nc1 -A file.c

Part 3 Option Details

36

-D Define Macro

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -D<definition name>=<definition>

-D<definition name>
 Function Defines a preprocessor macro.
 Description � Defines a macro in the same way as using the preprocessor #define

command. The two formats
-D<definition name>=<definition>
-D<definition name>

have the same result as entering the following at the beginning of a
source file.

#define <definition name>=<definition>
define <definition name>

� The C Compiler allows you to define up to 255 preprocessor macros
by specifying the -D option repeatedly.

� In Assembler Preprocessor, you can define up to 20 preprocessor
macros by specifying the -D option repeatedly.

 Example c870C -DBUFFER_LENGTH=256 -DDEBUG file1.c file2.c

This example has the same result as specifying the following at the
beginning of a source file:
#define BUFFER_LENGTH=256

#define DEBUG

 Chapter 3 Details of Options

 37

-E Preprocessor Output

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -E

 Function Outputs the results of preprocessor processing of a source file to standard
output.

 Description � When multiple files are specified, the results of processing of all files
are output to standard output in the order in which the files were
specified.

 Example cc870C –Nc1 -E file1.c file2.c

This command line executes only the preprocessor and outputs the results to standard

output (-E).

Part 3 Option Details

38

-F Fill Value

 Target tool CC ASM LINK LIB CONV

 * - x - -

 Format -F<value>

 Function Fills the empty areas in an output section with the specified value.
 Description � This option fills empty areas (padding areas) in an output section with

the value specified in <value>.
� <value> must be specified as a 2-byte numerical value.
� The empty area is filled with the high then low bytes of the specified

value from the padding start address.
� When the padding area is an odd number of bytes, the last byte is

initialized with the high byte.
� Only memory areas with the I memory definition attribute in the

command language file are padded. Memory areas without the I
attribute (which specifies that an area can be initialized) are not
padded.

� The padding value can be specified in link command file.
 Example tulink -F0xffff link.lcf

This command line links as specified in link.lcf and fills the empty areas in the output

object file with 0xffff.

 Chapter 3 Details of Options

 39

-F Select Object Format

 Target tool CC ASM LINK LIB CONV

 - - - - x

 Format -F<object format>

 Function Specifies the output format of the object converter.
 Description � The object formats are as follows:

<Object format> Object format

h16 Intel Hex format
h20 Intel extended Hex format
s16 Motorola S-16 format
s24 Motorola S-24 format
s32 Motorola S-32 format

� You cannot specify more than one object format at one time.
� If neither -Fh nor -Fs is specified, the command is processed assuming

-Fh16 is specified. (When not specified = -Fh16)
� If a numeric value is omitted when specifying -Fh or -Fs, the

command is processed assuming a value 16 is specified. (-Fh = -Fh16,
-Fs = -Fs16)

 Example tuconv -Fh20 filename.abs

This command line creates an Intel extended HEX format file called 'filename.h20' from

the absolute object file 'filename.abs'.

Part 3 Option Details

40

-I Directories for Input Files

 Target tool CC ASM LINK LIB CONV

 x x - - -

 Format -I<path>

 Function Specifies the search path for include files and macro library files.
 Description � This option specifies the search path for include files specified in

include instructions.
� <path> cannot be omitted.
� Do not specify the backslash (\) at the end of <path>.
� The C Compiler allows you to specify up to 31 directories.
� In Assembler Macroprocessor, and Assembler Preprocessor, you

can specify up to 47 directories.
� Searches are performed according to the path specified in the -I option

when the filename is specified with a relative path.
� When a file is specified with a relative path, the sequence in which it

is searched for differs according to whether the file is specified as
'include<<filename>>' or 'include"<filename>"'. In the case of
'include<<filename>>', the search starts from (2), below:
(1) The directory of the source files being.
(2) The directory specified in the -I option. When the -I option is

specified more than once, the INCLUDE directories of the
specified directories are searched in the order specified.

(3) When environmental variable THOMExxx has been set,
the THOMExxx/include directory (where xx is the CPU)

 Chapter 3 Details of Options

 41

 Detail explanation asm870c -I/usr/common -I../headers usr/a870C/filename.asm

The following examples show how the files are searched for when the above is specified.

The search stops immediately the target file is located. The environmental variables are set

as below.

 THOME870C=/commom/asmsys/tlcs870C

$include "def.h"

File 'def.h' is searched for as follows:

(1) usr/a870C/def.h (directory containing source file(s))

(2) /usr/common/def.h (/usr/common directory)

(3) ../header/def.h (../headers directory)

(4) /commom/asmsys/tlcs870C/include/def.h

$include <def.h>

File 'def.h' is searched for as follows:

(1) /usr/common/def.h (/usr/common directory)

(2) ../header/def.h (../headers directory)

(3) commom/asmsys/tlcs870C/include/def.h

$include "/usr/include/def.h"

Because the filename is specified with an absolute path, the directory remains unchanged

even when the -I option is specified.

-J Select Kanji Mode (Japanese version only)

 Target tool CC ASM LINK LIB CONV

 x x - - -

 Format -J

 Function Recognizes Kanji code.
 Note Do not use this option for English version.

Part 3 Option Details

42

-L Directories for Input Files

 Target tool CC ASM LINK LIB CONV

 * - x - -

 Format -L <path>

 Function Specifies the search path for input files for the linker.
 Description � The linker searches for object files, library files and command

language files according to the path specified by this option.
� <path> cannot be omitted.
� Do not specify the backslash (\) at the end of <path>.
� This option can be specified multiple times. When specified more than

once, the paths are searched in the order in which the paths are
specified.

� Files are searched for in the following order:
(1) The current directory.
(2) The directory specified in the -L option when the linker was

activated. When the -L option is specified more than once, the
specified directories are searched in the order specified.

(3) When environmental variable THOMExxx has been set, the
THOMExxx/lib directory (where xx is the CPU)

 Detail explanation tulink -L/usr/common -L../headers file1.obj usr/a870C/file2.obj file.lib

 Chapter 3 Details of Options

 43

-Mi No Macro Processing

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Mi

 Function Controls the process so that Macro processor is not activated.
 Description � When not specified, Macro processor is activated.
 Example cc870C –Nc1 -Mi file1. mac

'file1.mac' is processed by Assembler preprocessor and assembler, but not by Macro

processor.

-Nc Select Memory Style(TLCS-870/C,C1 only)

 Target tool CC ASM LINK LIB CONV

 x x x - -

 Format -Nc<memory style>

 Function Specifies CPU type or memory style of TLCS-870/C,C1.
 Description � Specify the Memory Style as a value of 0 to 3 in <memory style>.

� Be sure to specify this option. It becomes an error when this option is
omitted.

Memory Style Function

0 TLCS-870/C series
1 TLCS-870/C1 series Within 64Kbyte
2 TLCS-870/C1 series 96Kbyte
3 TLCS-870/C1 series 128Kbyte

 Example cc870C –Nc1 file1.c

file1.c is processed as TLCS-870/C1 within 64Kbyte by compiler, assembler and linker.

Part 3 Option Details

44

-O Select Optimization Level

 Target tool CC ASM LINK LIB CONV

 x x - - -

 Format -O[<optimization level>][<optimization type>]

 Function Specifies the optimization level of output code.
 Description � Specify the optimization level as a value in <optimization level>.

� When this option is omitted, the optimization level is as specified in
the default value.

� The optimization levels for each tool are shown in the following
tables.

C Compiler
Level Function

0 Minimum optimization (default)
 Stack release absorption. Branch instruction optimization

Deletion of unnecessary instructions
1 Basic block optimization
 Propagation of copying restricted ranges.

Gathering of common partial expressions in restricted ranges.
2 Optimization of more than basic blocks
 Propagation of copying whole functions.

Gathering of common partial expressions of whole functions
3 Maximum optimization
 Loop optimization and other miscellaneous optimization

Assembler

Level Function
0 No optimization
1 Optimization (default)

 Additional Note � In case of C source file, to deterrent optimization for assembler,
specify ”-Wa –O0”.

 Example cc870C –Nc1 -O3 file1.c file2.c

This command implements optimization to level 3 and compiles, assembles
and links the files.

 Chapter 3 Details of Options

 45

-P Run Preprocessor Only

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -P

 Function Executes only preprocessor processing.
 Description � No compiling is performed.

� Only the preprocessor is run to create a file with the name of the
source file and extension '.i'.

 Example cc870C –Nc1 -P file1.c file2.c

This option executes only the preprocessor and outputs the execution result
to a file (-P).

Part 3 Option Details

46

-P Fill Value

 Target tool CC ASM LINK LIB CONV

 - - - - x

 Format -P[<start address>],<size>,<value>,[<output file name>]

 Function Outputs <size> area to the file specified with <output file name> from <start
address>. Unused area is initialized by the specified <value>.

 Description � When this option is used with “-ra” or “-rb” option, the address moved
by “-ra” or “-rb” option is used as <start address>.

� <size> specifies 32-bit unsigned integer in byte. “K” following the
numerical value represents kiro byte and “M” is mega byte.

� <value> is 1 byte integer.
� <start address> specifies 32-bit unsigned integer. When <start

address> is omitted, the start address is address 0.
� This option can be specified multiple times.

 Example tuconv -ra 0x0,0x8000,+0x1000, -P 0x1000,32k,0x00, file.abs

Moves 32K byte(0x8000) to address +0x1000 from address 0x0000 of
file.abs., embeds 0x00 to the empty area and outputs to “file.h16”.

-S Create Assembly Source

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -S

 Function Activates the compiler or macro processor and preprocessor to create an
assembler source file.

 Description � No assembling or linking is performed.
 Examples cc870C –Nc1 -S file1.c file2.mac

This command compiles 'file1.c' to output 'file1.asm' (-S). File 'file2.mac' is processed by

Macro processor and assembly preprocessor to output 'file2.asm' (-S). No processing is

performed after assembling.

 Chapter 3 Details of Options

 47

-T Set Environment Variable

 Target tool CC ASM LINK LIB CONV

 - - x x x

 Format -T<CPU code>

 Function Sets the environment variable searched by the tools.
 Description � <CPU code> is as follows:

Series TLCS-870/X TLCS-870 TLCS-870/C,C1

CPU Code 870X 870 870C

� Each tool uses <CPU code> to search for the environment variable
THOME<CPU code>. If a path is set in that environment variable, it
is recognized as the standard directory.

 Additional Note � When using drivers, this option is automatically set for Macro
processor, preprocessor, and linker.

 Example cc870c –Nc1 -T870C -I/usr/commo file1.mac

This command adds the directory specified in THOME870C,C1 (-T870C)
as well as the directories (standard) specified in environment variable
THOMExxx.

Part 3 Option Details

48

-U Undefine Macro

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -U<definition name>

 Function Invalidates the definition of the preprocessor macro in <definition name>.
 Description � This option has the same result as specifying #undef<definition

name> at the start of a source file.
The following format:

-U<definition name>

has the same result as when the following is specified at the start of
the source file:

#undef <definition name>

� The -U option is valid, regard of the order of the arguments, when the

-D option is used as an argument on the command line to define a
<definition name> with the same name.
For example, the following is the same as when -DDEBUG is not
specified:

cc870c –Nc1 -DDEBUG -UDEBUG filename.mac

� The C compiler allows you to invalidate up to 255 preprocessor

macros by specifying the -U option repeatedly.
� In Assembler Preprocessor, you can invalidate up to 20 preprocessor

macros by specifying the -U option repeatedly.

 Example cc870c –Nc1 -UDEBUG file1.c file2.c

 Chapter 3 Details of Options

 49

-V Output Version Number

 Target tool CC ASM LINK LIB CONV

 x x x x x

 Format -V

 Function Outputs Assembler version number to console.
 Description � When Assembler is activated, startup messages such as Assembler

version number are output to console.
 Example cc870C –Nc1 -V file1.c file2.c

-W Pass Options to Tool

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -W<tool>,<option>[,<option>...]

 Function Passes one or more options to the specified tool
 Description � This option passes the option(s) specified in <option> as arguments

when activating the tool specified in <tool name>.
� The tool is specified in <tool name> using one of the following letters.

Tool name Tool
p or 0 Parser (for C compiler)

2 Code generator (for C compiler)
m Macro preprocessor
a Assembler
l Linker

� Multiple options can be specified by delimiting <option> with
commas.

 Example cc870C –Nc1 -Wa,-o,boo.asm foo.mac

This command line passes the two options '-o' and 'boo.asm' to MacroPreprocessor.

Part 3 Option Details

50

-XE Ignore Escape Sequence

 Target tool CC ASM LINK LIB CONV

 * x - - -

 Format -XE

 Function Interprets the backslash (\) not as the first symbol in the escape sequence but
as a normal character.

 Description � This option does not need to be specified when a driver is used to run
each of the tools including Assembler.

 Example asm870C -J -XE file1.asm

 Chapter 3 Details of Options

 51

-XF No Deletion of Assembler Source

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -XF

 Function Driver does not delete the assembler source files that are intermediate
results of the process.

 Description � Compiles, assembles, and links files without deleting the assembler
source files that are intermediate results of the process.

 Example cc870c –Nc1 -XF file1.c

'file1.c' is compiled to output 'file1.asm' (-XF). The file is assembled and
linked.

-XS Code Size Optimization

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -XS

 Function Specifies the output of minimum object code size.
 Description � When this option is specified, part of optimization is skipped.
 Example cc870c –Nc1 -XS file1.c file2.c

This command specifies the output of minimum object code to improve
memory utilization. However, execution speed may deteriorate.

Part 3 Option Details

52

-Xec Change Type of Enumeration Constant

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xec

 Function Determine the type of enumeration constant according to the scope of
enumerator values.

 Description � According to the scope of enumerator values, this option determines
the type of enumeration constant to be one of unsigned char, signed
char, unsigned int, or signed int.

� The type of enumeration constant in order of the following.
Scope of Enumerator Values Type of Enumeration Constant
0 to 255 unsigned char
-128 to 127 signed char
0 to 32767 unsigned int
-32768 to 32767 signed int
� For enumeration constants outside the above scopes, Compiler outputs

Error-343: Out of range for enum constant.
 Supplement � Supplement Because this option is not ANSI-compliant, it cannot be

used in combination with the -A option. Neglect of this limitation
results in generation of warning
Options -Ao and Am can be used in combination.

� Specifying this option helps to increase memory efficiency.
 Example cc870c –Nc1 –Xec file.c

/* unsigned char */
 enum BEST1{uc_mini=0,uc_max=255};
/* signed char */
 enum BEST2{sc_mini=-128,sc_max=127};
/* unsigned int */
 enum BEST3{ui_mini=0,ui_max=32767};
/* signed int */
 enum BEST4{si_mini=-32768,si_max=32767};
 enum BEST1 i=uc_mini;/* i is unsigned char*/
 enum BEST2 j=sc_mini;/* j is signed char */
 enum BEST3 k=ui_mini;/* k is unsigned int */
 enum BEST4 l=si_mini;/* l is signed int */

 Chapter 3 Details of Options

 53

-Xi Run Macro Processor

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xi

 Function Activates Macro processor before Assembler when creating object files
from C language source files.

 Description � Normally, only Assembler is activated when creating object files from
C language source files.

 Example cc870c –Nc1 -Xi file1.c file2.c

Normally assembler source files are created by the compiler and these files
are then assembled. However, this command inserts macro processor
processing between compiling and assembling.

-Xns Integration of Stack Freeing

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xns

 Function Suppress the optimization to integrate freeing of the stack.
 Description � This option suppresses the optimization to integrate freeing of the

stack.
 Supplement � Specifying this option helps to increase RAM efficiency. However,

code efficiency slightly decreases and the execution speed slows
down.

Part 3 Option Details

54

-Xr Set Default Function Modifier (__adecl)

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xr

 Function Specifies '__adecl' as the default function modifier.
 Description � Compiling is performed as if '#pragma adecl' is specified at the

beginning of the source file.
� When the standard library function is used, note that this option can

not be specified.
 Example cc870c -Nc1 -Xr file1.c file2.c

 Chapter 3 Details of Options

 55

-Xub Select Unsigned Characters

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xub

 Function Specifies that bit field members declared without 'signed' or 'unsigned' are
processed as unsigned.

 Description � When this option is not specified, bit field members declared without
'signed' or 'unsigned' are processed as signed.

 Example cc870c –Nc1 –Xub filename.c

When built into filename.c

struct code {int seg:4; int off:12;};

is equivalent to declaring the following:

struct code {unsigned int seg:4; unsigned int off:12;};

-Xuc Select Unsigned Characters

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xuc

 Function Handles the char type declared without adding signed or unsigned as
unsigned char and strings as unsigned char.

 Description � When this option is not specified, char declared without 'signed' or
'unsigned' are processed as signed.

 Example cc870c –Nc1 -Xuc filename.c

When built into filename.c

char message[]="Hellow World!";

is equivalent to declaring the following:

unsigned char message[]="Hellow World!";

Part 3 Option Details

56

-Xw Change bit field assignment order

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Xw

 Function Changes bit field assignment order.
 Description � The members of the bit field are assigned from the most significant

bit(MSB). When this option is specified, they are assigned from the
least significant bit.

 Additional Note � See the Programmer’s Guide file for details.
 Example cc870c –Nc1 -Xw file.c

Bit field definition in file.c.
struct field1 {
 unsigned char a:1;
 unsigned char b:2;
 unsigned char c:3;
 unsigned char d:1;
 unsigned char e:3;
 unsigned char f:2;
}

MSB 7 6 5 4 3 2 1 0 LSB

 a b c d

MSB 7 6 5 4 3 2 1 0 LSB

 e f

Figure 3.2 Assignment image of default field 1
(shows empty bit)

MSB 7 6 5 4 3 2 1 0 LSB

 d c b a

MSB 7 6 5 4 3 2 1 0 LSB

 f e

Figure 3.2 When specified -Xw, assignment
of field 1(shows empty bit)

 Chapter 3 Details of Options

 57

-ZA -ZC -ZD -ZT Set Default Section Size

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -ZA<size attribute>

-ZC<size attribute>
-ZD<size attribute>
-ZT<size attribute>

 Function Specifies the default section size attribute.
 Description � Specify 'tiny', 'near', or 'far' in <size attribute>.

� The following table shows the relationship between this option and
the section's default <size attribute>.

 Default

 Section 870/X 870 870/C,C1
-ZA area section far near near
-ZC const section far near near
-ZD data section far near near
-ZT code section far near near

 Additional Note � This option has similar function to -Za, -Zc, -Zd, -Zi, and -Zt. In

contrast to -Za, etc., this option cannot be used to change the name of
a default section.

 Example cc870c –Nc1 -ZA near file1.c file2.c

This command compiles source files file1.c and file2.c using 'near' as the
size attribute of any area sections in those source files.

Part 3 Option Details

58

-Za -Zc -Zd -Zi -Zt Set Default Section Name

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -Za<section name>[,<size attribute>]

-Zc<section name>[,<size attribute>]
-Zd<section name>[,<size attribute>]
-Zi<section name>
-Zt<section name>[,<size attribute>]

 Function Specifies the default section name.
 Description � The default section name is used when this option is not specified.

� Specify <section name> as a character string of maximum 32
characters.

� Specify 'tiny', 'near', or 'far' in <size attribute>.
� The following table shows the relationship between this option and

the section's default <section name>.
 Default

 870/X 870 870/C,C1
-Za f_area n_area n_area
-Zc f_const n_const n_const
-Zd f_data n_data n_data
-Zi io_XXX io_XXX io_XXX
-Zt f_code n_code n_code

 Example cc870c –Nc1 -Za newarea,near file1.c file2.c

 Chapter 3 Details of Options

 59

-c Create Object but not Link

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -c

 Function Creates a relocatable object file.
 Description � Compiling and assembling, or just assembling, are performed and a

relocatable object file is created. The linker is not activated.
� When multiple source files are specified as command line arguments,

each file is compiled and assembled to create a relocatable object file.
 Example cc870c –Nc1 -c file1.c file2.c

-c Specify a comment

 Target tool CC ASM LINK LIB CONV

 - - - - x

 Format -cc<comment>

-cf<filename>

 Function Specifies a comment to be inserted into an object file output by the object
converter.

 Description � <comment> is a character string. <comment> cannot include spaces.
� Comments in the file specified in <filename> are recognized as one

comment per line. Multi-line comments can be written in the file.
� When converting a file to the Intel object format, the colon cannot be

used as the first character of a comment. If specified, it is ignored.
 Example tuconv -cc this_is_comment file.abs

Creates an object file in Intel HEX format and inserts the comment
'this_is_comment'.
tuconv -Fs24 -cf comment.cmt file.abs

Creates an object file in 24-bit Motorola S format and creates comments
from the character strings in the file 'comment.cmt'.

Part 3 Option Details

60

-d Delete a Module

 Target tool CC ASM LINK LIB CONV

 - - - x -

 Format -d[v] <library filename><module list>

 Function Deletes one or more modules from a library file.
 Description � This option deletes the module(s) specified in <module list> from the

library file specified in <library file>.
� Specify the modules in the module list delimited with spaces.
� The 'v' sub-option outputs the names of the deleted modules to

standard output.
 Example tulib -dv libfile.lib module1 module2

This command deletes modules 'module1' and 'module2' from library file
'libfile.lib'.

-e Create Error List File

 Target tool CC ASM LINK LIB CONV

 * x x x x

 Format -e<filename>

 Function Outputs all error messages to one file.
 Description � This option outputs all errors that occur during program execution to

the file specified in <filename>.
� Warning error messages are also output to the error list file.
� When a driver is used, all error messages from all tools activated by

the driver are output to the specified file.
� When a fatal error occurs, processing ends immediately and no error

list file may be created.
 Additional Note � Tools other than drivers add error messages to any files previously

specified with this option, if they exist.
 Example cc870c –Nc1 -e errlst.err file1.c file2.c

 Chapter 3 Details of Options

 61

-f Read Option from a File

 Target tool CC ASM LINK LIB CONV

 x x - x x

 Format -f <filename>

 Function Reads the options from a file containing a startup option list.
 Description � The options specified on the command line can be written in a text file

and specified in <filename>. The list of options is then automatically
read in from that file.

� Command parameters can be specified across multiple lines in an
option list file.

 Example cc870c –Nc1 -ffilename.cmd

In this example, the cc870c reads the command parameters from command file

'filemane.cmd'. The following is an example of the content of 'filename.cmd'.

 -O2 -DMACRO

 -ooutfile.abs

 file1.c

 file2.asm

 file3.rel

 file4.lib

Part 3 Option Details

62

-g Create Debugger Information at assemble phase

 Target tool CC ASM LINK LIB CONV

 x x - - -

 Format -g[<level>]

 Function Outputs source level debugging information or symbolic debugging
infomationto an object file.

 Description � This option outputs source level debugging information or symbolic
debugging information to an object file.

� If the source file is written in C, the source level debugging
information is output in C. Likewise, if the source file is in assembly
language, the debugging information is in assembly.

� You can select "source level debugging infomation" or "symbolic
debugging infomation" by designate <level>. Option "-g" and "-g0"
are the same.

Level Function

0 Outputs source level debugging infomation
1 Outputs symbolic debugging infomation

� When this option is omitted, no source level debugging information is

output to the object file.

 Additional Notes � No source level debugging information is output for the macro
processor or assembler preprocessor. Therefore, carry out source level
debugging on Assembler source resulting from macro expansion in
the case of macro processor and assembler preprocessor source
programs.

 Example cc870c –Nc1 -g file1.c file2.c

 Chapter 3 Details of Options

 63

-g Create Debugger Information at linking phase

 Target tool CC ASM LINK LIB CONV

 * - x - -

 Format -ga

-gm <filename>
 Function Outputs debugging information to an ABS file.
 Description � This option outputs debugging information stored in REL file which is

specified by a linkage editor's input file, into the ABS file.
 sub option � Sub option "-ga" or "-gm" must be specified to output the debugging

information into the ABS file.
 -ga � The debugging information of every REL file is stored into the ABS

file.
 -gm <filename> � The debugging informations of the REL file which is specified by a

<file name> is stored into the ABS file.
� This option can be specified as many times as desired.

 Example tulink -ga file1.rel file2.rel

tulink -gm file1.rel file1.rel file2.rel

Part 3 Option Details

64

-l Create List File

 Target tool CC ASM LINK LIB CONV

 * x x - x

 Format -l[<suboption>]

 Function Creates a list file.
 Description � Unless the 'f' suboption is specified, the list file takes the name of the

source file plus an extension which is the preset value for the tool.
Tool Extension

Assembler .lst
Linker .map

Macropreprocessor .med
� The information output to the list file can be controlled according to

the one-letter suboption specified after '-l'. Table shows the
suboptions.

� Multiple suboptions can be specified after '-l'. However, suboptions (f
and x) of the argument must be specified last.

� The following describes types of suboption and tools that can be used.
Suboptions

 ASM LINK CONV
No specification x x x

a - x -
f<filename> x x x
x[<value>] x x -

 Suboption In addition to controlling the information that is output, this option also

controls the format of the list. The following details the operations specified
by the suboption.

 No specification Only '-l' is specified. In this case, a basic list file is output, including a
symbol list but no page break codes. The list file name takes the name of the
source file plus an extension which is the preset value for the respective
tools.
� When “-I” is specified in tuconv, the converting information is output

to the console. If “-I” is not specified, the information is never output.
Thus only object conversion is executed.

 a All link information is output to the link information list file.
 f<filename> The list file is output with the name specified in <filename>, which is

mandatory.

 Chapter 3 Details of Options

 65

 x This suboption outputs a cross reference to the list file.
� In the case of the linker, a cross reference of wide- area symbols is

output to the wide-area symbol list in the list file in addition to basic
link information. When no 'g' suboption is specified, it is
automatically assumed and the public symbol list output at the same
time.

 Example cc870c –Nc1 -la file.c

This command creates Linker list file 'file.map'.

Part 3 Option Details

66

-l Output Module Symbol Information

 Target tool CC ASM LINK LIB CONV

 - - - x -

 Format -l <library filename>[<module lis>]

 Function Outputs symbol information for modules in a library file.
 Description � This option outputs symbol information for modules in a library file.

� Specify the target library file in <library filename> and the modules in
that library file for which symbol information is to be output in
<module list>. The following is output as information on symbols in a
module:

� Module name
� Size
� External definition symbols
� External reference symbols

� Specify the names of modules in <module list> delimited with spaces.
� When no <module list> is specified, information is output for all

modules in the specified library file.
� An error occurs if the modules specified in <module list> do not exist

in the specified library file.
 Example tulib -l libfile.lib module1 module2

Symbol information for modules 'module1' and 'module2' in library file
'libfile.lib' is output in the following format:

MODULE INFORMATION :
Name Size Type
module1 279 relocatable
module2 353 relocatable
PUBLIC SYMBOL(S) :
module1 init
module2 table
EXTERN SYMBOL(S) :
modume1 No Symbol
modume2 calc
 init

 Chapter 3 Details of Options

 67

-m Select Memory Model(TLCS-870/X only)

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -m<memory model>

 Function Sets TLCS-870/X memory model.
 Description � <memory model> is as follows:

Memory model Description
-ms Compile in small model
-mm Compile in medium model
-ml Compile in large model

� The default when this option is omitted is -ms.
 Example cc870X -ms file.c

This command compiles 'file.c' in small mode.

Part 3 Option Details

68

-o Set Output Filename

 Target tool CC ASM LINK LIB CONV

 x x x - x

 Format -o<filename>

 Function Specifies the filename of the final output file.
 Description � The final output file is created with the name specified in <filename>.

� <filename> is mandatory.
� When the tools are activated by a driver, the last- activated output file

is specified.
� The last output file of each tool is as follows. When this option is

omitted, the final output file takes the name of the source file plus the
appropriate extension.

Tool Final output file Extension
MPP Macro preprocessor output file .asm
ASM Relocatable object file .rel
LINK Absolute object file .abs
TUCONV Converted object file Note
Note : Extension is depend on the object format.

� In the case of CC driver, the final output file differs according to the
specified options:

Option Final output file
-c Relocatable object file (last tool is ASM)
-P Macropreprocessor output file
-S Assembler source file

� When this option is specified by a driver, a filename specified with the
'-o' option is ignored when two or more files are created.

� This option must be specified when creating a relocatable object file
by specifying '-r' with the linker.

 Examples cc870c –Nc1 -o test.abs file.c

This command activates CC driver to compile C source file 'file.c' and
create the absolute object file 'test.abs'.

 Chapter 3 Details of Options

 69

-r Select Incremental Linking

 Target tool CC ASM LINK LIB CONV

 * - x - -

 Format -r

 Function Creates a relocatable object file (incremental linking).
 Description � This option is used when relinking an object file that has already been

linked and a relocatable object file that has not yet been linked.
� When linking relocatable object files, this option specifies that the

result of linking is output not as an absolute object file but as a
relocatable object file.

� When specifying this option, also specify the name of the output file
using the '-o' option. An error occurs if the output filename is not
specified.

� The input sections are linked according to the section instructions in
the command language. The mapping address is not, however,
defined. Output files linked using this options are therefore relocatable
object files.

� When this option is specified, a warning message is output and the
memory definition section is ignored if one exists in the command
language file.

 Example cc870c –Nc1 -o file.rel -r file1.c file2.c

tulink file.rel file3.rel

This command creates a relocatable object file named 'file.rel'. 'file.rel' and
'file3.rel' are then linked to create 'file.abs'.

Part 3 Option Details

70

-r Replace Modules

 Target tool CC ASM LINK LIB CONV

 - - - x -

 Format -r[cuvw] <library filename><module list>

 Function Creates a library file and records and updates modules.
 Description � This option records and updates the modules specified in <module

list> in the library file specified in <library filename>.
� There are three ways to specify the modules in <module list>. These

three ways can be combined by delimiting them with spaces.
� To specify the filename of the object file when specifying

modules in an object file.
� Specify only the library filename when all modules in a library

file are being indicated.
� If a module specified in <module list> does not exist in the specified

library file, it is inserted in that library file.
� If a module specified in <module list> does exist in the specified

library file, the module with that name in the library file is updated
with the module specified.

� If the specified library does not exist, a message is output and a new
file is created. The modules are then recorded in the new library.

 Suboptions c � Suppresses message output when creating a library file.
 u � Updates a module in a library file only when the module specified in

<module list> has a more recent date than the module in the library
file.

� Updates only those modules specified in <module list> that have more
recent dates than those in the library file.

 v � Outputs the name of the recorded or updated module to standard
output (normally console).

� Returns an error when a module specified in <module list> does not
exist.

 Chapter 3 Details of Options

 71

 w � When the module specified in <module list> is dated more recent than
those in the library file, it is updated.

� If the module specified in <module list> does not exist in the library
file, it is registered to the library.

 Example tulib -r libfile.lib file.rel

This command records or updates module 'file.rel' in library file 'libfile.lib'.
The module is recorded in the library file if it does not already exist, or is
updated if it does already exist.

Part 3 Option Details

72

-ra Object Output Range by address specification

 Target tool CC ASM LINK LIB CONV

 - - - - x

 Format -ra[<block start address>],[<size>],

[<offset or moved start address>],[<Output file name>]

 Function Selects <size> object from <block start address> of input file and outputs
the selected object to the file specified by <output file name> after the
address is moved with <offset or moved start address>.

 Description � <block start address> specifies 32-bit unsigned integer.
� When <block start address> is omitted, the start address is regarded as

address 0.
� <size> specifies 32-bit unsigned integer.
� When <size> is omitted, all objects after <start address> is output.
� When the first mapping address of the object differs from the address

at execution, <offset or moved start address> is used to set the first
mapping address. Additionally, it is used to move the address once at
writing the object to EPROM, etc.

� The object code(address parts in the code) is not changed.
� <offset or moved start address> is specified as follows:

<integer value> : Specifies the moved start address.
+<integer value> : Adds the offset to the address.
-<integer value> : Subtracts the offset to the address.

� <output file name> specifies the object output file name.
� When <output file > is omitted, the file name is changed to that ' h16',

'.s24', etc. add to the same as the input file name.
� When this option is specified multiple times and <output file name> is

the same as that of the multiple options, the respective options are
collected into one output file.

 Example tuconv -ra 0x12000,0x1000,,file.h20 file.abs

Outputs 0x1000(4K byte) in Intel extended HEX format from start address
0x12000.

 Chapter 3 Details of Options

 73

-rb Object Output Range by section specification

 Target tool CC ASM LINK LIB CONV

 - - - - x

 Format -rb<section name>,[<size>],

[<offset or moved start address>],[<Output file name>]

 Function Selects <size> object specified with <section name> from input file and
outputs the selected object to the file specified by <output file name> after
the address is moved with <offset or moved start address>.

 Description � <section name> specifies output section name.
� <section name> is the section name determined at linking. The output

section name specified at linking is the section name.
� <size> specifies 32-bit unsigned integer.
� When <size> is omitted or over the specified section size , only the

specified section is output.
� When the first mapping address of the object differs from the address

at execution, <offset or moved start address> is used to set the first
mapping address. Additionally, it is used to move the address once at
writing the object to EPROM, etc.

� The object code(address parts in the code) is not changed.
� <offset or moved start address> is specified as follows:

<integer value> : Specifies the moved start address.
+<integer value> : Adds the offset to the address.
-<integer value> : Subtracts the offset to the address.

� <output file name> specifies the object output file name.
� When <output file name> is omitted, the output file name is the file

name which 'h16', '.s24', etc. follow the same as the input file name.
� When this option is specified multiple times and <output file name> is

the same as that of the multiple options, the respective options are
collected into one output file.

 Example tuconv -Fh20 -rb sectionA,0x1000,,file.h20 file.abs

Outputs 0x1000(4K byte) in Intel extended HEX format from the beginning of section A.

Part 3 Option Details

74

-s Define SET Symbol

 Target tool CC ASM LINK LIB CONV

 * - - - -

 Format -s <SET symbol>=<value>

 Function Defines a symbol of Macro Preprocessor SET function.
 Description � Specify <value> as a 32-bit signed integer.
 Example cc870c –Nc1 –sAAA=1 file.mac

-t Output Module List

 Target tool CC ASM LINK LIB CONV

 - - - x -

 Format -t[v] <library filename>[<module list>]

 Function Outputs a list of modules in a library file.
 Description � This option outputs a list of the modules specified in <module list> in

the library file specified in <library filename>. The list is output to
standard output (normally console).

� The module list contains the information which Module name, size in
bytes, attribute, creation date and time.

� Specify modules in <module list> delimited by spaces.
� The 'v' suboption outputs size and creation date in addition to the

module name.
� When <module list> is omitted, a list of all modules in the library file

is output.
 Example tulib -tv libfile.lib

This command lists information on all modules in library file 'libfile.lib'.
An example of output is shown below. From left to right, each line includes
the module name, size, attribute, and creation date.
module1 279 relocatable Mar 07 22:05 1992

module2 353 relocatable Mar 07 22:43 1992

 Chapter 3 Details of Options

 75

-u Delete All Predefined Macros

 Target tool CC ASM LINK LIB CONV

 x - - - -

 Format -u

 Function Invalidates all predefined macros.
 Description � The following table lists predefined macros.

Predefined macro Remarks
__LINE__ Common
__FILE__ Common
__DATE__ Common
__TIME__ Common

 Example cc870c –Nc1 -u file1.c file2.c

-u Record Undefined Symbol

 Target tool CC ASM LINK LIB CONV

 * - x - -

 Format -u<symbol>

 Function Records an undefined symbol in the symbol table.
 Description � This option records <symbol> as an undefined symbol in the symbol

processing table.
� The symbol processing table is initially empty and is used for

referencing unresolved symbols in order to forcibly load a routine. It
is useful to, for example, load modules only from a library.

 Example tulink -u symbol link.lcf

Part 3 Option Details

76

-w Select Warning Level

 Target tool CC ASM LINK LIB CONV

 * x x - -

 Format -w[<warning level>]

 Function Specifies the warning level.
 Description � Specify the warning level as a number in <warning level>.

� The default value when this option is not specified is '-w1'.
� Note that specifying '-w' without a number is equivalent to '-w0', and

no warnings are output.
� See the section on error messages for the warnings that are output at

each level.
� The warning level range of each tool is as follows:

� C Compiler 0-3
� Assembler 0-1
� Linker 0-1

� The warnings are output for all levels at and below the specified level.

 Example cc870c -Nc1 -w2 file1.c file2.c

This command outputs messages for warning levels 1 and 2 in addition to
normal error messages.

Part 4 Formats

 Chapter 1 Assembler List Format

 79

Chapter 1 Assembler List Format

1.1 Assemble List

The format of the assemble list is as follows:

Location Object Ins Line Source Statement

xxxxxxxx yyyy yyyy yyyy yyyy r +i nnnn mmmmm sssss...

 yy [zzz]

 vvvvvvvv

x..x : Location counter (hexadecimal)
v..v : Value set by EQU directive (4-digit hexadecimal)
y..y : Object code

Normally left aligned.
z..z : yy indicates one code when using the DFt directive, and zzz

shows the number of codes.
r : "R" is displayed when a relocatable term is included.
+i : Shows "include" nesting level (one decimal digit)
n..n : Line number

This is the sequential number of each file if more than one
include file exists.

m..m : Line number
This is the sequential number of all files including include files.

s..s : Source code

Part 4 Formats

80

1.2 Symbol List Format

The following shows the format of symbol lists.

Symbol Category Value Attribute Cross_reference

ssssssssssssssss c z aaa xxxxxxxx r yyyyyyyy dddd kkkkk kkkkk#

ssssssssssssssssssssssssssssssss

 c z aaa xxxxxxxx r yyyyyyyy dddd kkkkk kkkkk#

s..s : Symbol (Displayed on one line if 16 or fewer characters)
c : Section attribute

D : Data C : Code R : Romdata Empty : Other
z : Size

S : Small M : Medium L : Large Empty : Other
a..a : Class attribute

LAB : Label VAR : Variable
NUM : EQU value MOD : Module name
SEC : Section name

x..x : Symbol value
Class attribute = LAB, VAR : Address value
Class attribute = NUM : Definition value
Class attribute = SEC : Starting address value
Class attribute = MOD : Empty
Definition symbol : Undef

r : Relocatable attribute
R : Relocatable value A : Absolute value

y..y : Symbol scope
PUB : Public EXT : External Empty : Local
Class attribute = SEC : Section size
Class attribute = MOD : Not displayed

d..d : Section name
(Only when the section to which a label or a variable belongs is
relocatable.)

k..k : Cross-reference. A pound sign (#) is added to the definition line.
(The line numbers are sequential.)

 Chapter 1 Assembler List Format

 81

Copyright(C) 1992 TOSHIBA CORPORATION All rights reserved
Tue Mar 30 11:02:58 1993

TLCS-870/C Relocatable Assembler V1.0a [Page 1] sam_asm1.lst
Runtime option : K:\BIN\ASM870C.EXE sam_asm1.asm

Location Object Ins Line Source Statement

 +0 1 1 -lw120
 +0 2 2 $MAXIMUM
 +0 3 3
 0000FEDC +0 4 4 D16 EQU 0xfedc
 00ABCDEF +0 5 5 D24 EQU 0xabcdef
 +0 6 6
 +0 7 7 public VAR1,LAB1,LAB2
 +0 8 8 extern medium ext_m1,ext_m2
 +0 9 9
 +0 10 10
 +0 11 11 DT_1 section data small
00000000 +0 12 12 VAR1 dsb 1
00000001 +0 13 13 VAR2 dsw 1
00000003 +0 14 14 VAR3 dsl 1
00000007 +0 15 15 dsb 1
 +0 16 16 ;
 +0 17 17 ;
 +0 18 18 CD_1 section code abs=0x8000
00008000 ECC8EFCDAB00 +0 19 19 LAB1: ADD XIX,D24
00008006 EDC8EFCDAB00 +0 20 20 ADD XIY,D24
0000800C D8C8EFCD +0 21 21 ADD WA,D24
D:\TEMP\sam_asm1.asm 21 : ASM870C-Warning-501 : Operand value is out of range
00008010 300000 R +0 22 22 LD WA,VAR1
00008013 310000 R +0 23 23 LD BC,ext_m1
 +0 24 24 ;
 +0 25 25 ;
 +0 26 26 CD_2 section code medium align=2,2
00000000 00 +0 27 27 nop
00000300 +0 28 28 org 0x300
00000300 00 +0 29 29 LAB2: nop
00000301 +0 30 30 align 0x10
00000310 00 +0 31 31 nop
 +0 32 32 ;
 +0 33 33 ;
 +0 34 34 RD_1 section romdata large
00000000 01 +0 35 35 VAR4_abcdefghijklmno db 1
00000001 0100 +0 36 36 VAR5 dw 1
00000003 01000000 +0 37 37 VAR6 dl 1
 +0 38 38 ;
 +0 39 39 ;
 +0 40 40 END
D:\TEMP\sam_asm1.asm 40 : ASM870C-Warning-513 : "1" ignored extern symbol(s)

Assembly complete, 2 warning error(s)

Part 4 Formats

82

TLCS-870C Relocatable Assembler V1.0a [Page 2] sam_asm1.lst

Symbol table listing

Symbol Category Value Attribute

CD_1 C SEC 00008000 A 16
CD_2 C M SEC 00000000 R 311
D16 NUM 0000FEDC A
D24 NUM 00ABCDEF A
DT_1 D S SEC 00000000 R 8
LAB1 C LAB 00008000 A PUB CD_1
LAB2 C M LAB 00000300 R PUB CD_2
RD_1 R L SEC 00000000 R 7
VAR1 D S VAL 00000000 R PUB DT_1
VAR2 D S LAB 00000001 R DT_1
VAR3 D S LAB 00000003 R DT_1
VAR4_abcdefghijklmno
 R L LAB 00000000 R RD_1
VAR5 R L LAB 00000001 R RD_1
VAR6 R L LAB 00000003 R RD_1
ext_m1 00000000 R EXT
sam_asm1 MOD

Define 16 user symbol(s)

 Chapter 2 Linker List Format

 83

Chapter 2 Linker List Format
Information is output to the link list in the following format:

(1) Command file display (command file name and commands)
(2) Encountered error messages (in order encountered)
(3) Input module list (input file names and module names)
(4) Link map

The link map contains 7 items, each on one line.
Memory : Memory name
Out-sec : Output section name
Attri : Section attribute
Base : Input section starting address
Length : Input section size
In-sec : Input section name
(In-file) : Name of input file containing input section
Information : Other information

NORMAL : Normal section(Relocatable)
NORMAL:A : Normal section(Absorute)
Gap : Empty
Padding : Padding area
DUMMY : DUMMY section
NOLOAD : NOLOAD section
COPY : COPY section
OVERLAY : OVERLAY section

(5) Duplicate-definition public symbols (symbol name and defined file
name)

(6) Unresolved external symbols (symbol name and reference file name)
(7) Symbol list

The symbol list is displayed as four items on individual lines:
Symbol : Name of public or local symbol
Address : Value (address) of symbol
In-sec : Name of input section
Cross-reference : Name of called input module

Part 4 Formats

84

Toshiba Unified Linkage Editor V1.0a [Page 1] sam_asm1.map
Runtime option : K:\BIN\TULINK.EXE sam.lcf

 Command file : sam.lcf
 -la sam_asm1.rel sam_asm2.rel
 memory
 {
 data.s : origin=0x0000 , length=0x80
 data.m : origin=0x080 , length=0x0400
 code.m : origin=0x8000 , length=0x1000
 romdata.m : org=0x9000 , length=0x1000
 data : org=0x10000 , len=0x10000
 code : org=0x20000 , len=0x10000
 }

 TULINK-Warning-511: Unresolved external symbol "EXT_L"
 TULINK-Error-209: Reference made to unresolved external symbol "EXT_L"

 Input files (modules)
 sam_asm1.rel (sam_asm1)
 sam_asm2.rel (sam_asm2)

 Link map
 Memory Out-sec Attri Base Length In-sec(In-file) Information
 --------- -------- ----- ------- ---------- ----------------------- ----------
 data.s DT_1 DATA 0 8 DT_1 (sam_asm1.rel) NORMAL
 data.s RD_1 ROMDATA 8 7 RD_1 (sam_asm1.rel) NORMAL
 data.s F 71 *** Gap ***
 data.m 80 400 *** Gap ***
 code.m CD_1 CODE 8000 16 CD_1 (sam_asm1.rel) NORMAL
 code.m CD_2 CODE 8016 311 CD_2 (sam_asm1.rel) NORMAL
 code.m 8327 1D9 *** Gap ***
 code.m CD_A CODE 8500 E CD_A (sam_asm2.rel) NORMAL
 code.m 850E AF2 *** Gap ***
 romdata.m 9000 1000 *** Gap ***
 data 10000 10000 *** Gap ***
 code 20000 10000 *** Gap ***

 Unresolved external symbols
 EXT_L : sam_asm2.rel

 Symbol table for sam_asm1.abs
 Symbol Address In-sec Cross-reference
 ------------ -------- -------- --------------------------------------
 Input module : sam_asm1
 LAB1 8000 CD_1 sam_asm2
 LAB2 8316 CD_2 sam_asm2
 VAR1 0 DT_1 sam_asm2
 VAR2 1 DT_1
 VAR3 3 DT_1
 VAR4_abcdefghijklmno
 8 RD_1
 VAR5 9 RD_1
 VAR6 B RD_1
 Input module : sam_asm2
 ext_m1 8500 CD_A sam_asm1

Linkage editor end,With error

 Chapter 3 Object Format

 85

Chapter 3 Object Format
You can select one of five object formats, outlined below, to be output by
the object converter TUCONV.

3.1 Intel Format

The Intel HEX format has 16-bit addressing, while the Intel extended HEX
format has 20-bit addressing. The latter includes the extended address code
added to the object format of the former.

Comment

:leng adr type datadata checksum

 :

:leng adr type datadata checksum

:leng sadr type checksum

leng : Number of data items in record (2-digit hexadecimal)
adr : "data" address (4-digit hexadecimal) following the "00" of

"adr"
type : Record type

00 : Normal record
01 : End record
02 : Extended address record

data : One byte of data (2-digit hexadecimal)
The data in each record is contiguous.

checksum : Checksum (2-digit hexadecimal)
The hexadecimal values from "leng" to "checksum" are
delimited into 2-digit values, each interpreted as one byte
of data. This value is the complement of the lower 8 bits
of the sum of these bytes.

sadr : Program execution starting address (4-digit hexadecimal)
This is the end record, and normally output as "0000". The
type is "01".

Extended Address Records
Extended address records are of type "02" and address "0000". "data" shows
the paragraph address (USBA). Data after encountering the extended
address code is mapped to an address obtained by shifting the paragraph
address 4 bits left and adding the address (adr) of the data record.

Part 4 Formats

86

3.2 Motorola S Format

You can select 16-bit, 24-bit, and 32-bit addressing in the Motorola S
Format. Each format includes a common header record plus data records
with the respective address length and an end record for the respective data
record.

 S0:
type cnt adr data checksum

 :

type cnt adr data checksum

type : Record type

S0 : Header record
S1 : Data record (16-bit address)
S2 : Data record (24-bit address)
S3 : Data record (32-bit address)
S7 : End record (32-bit address)
S8 : End record (24-bit address)
S9 : End record (16-bit address)

cnt : Number of bytes from "adr" to "checksum" (2-digit
hexadecimal)

adr : Starting address of "data" (4-, 6-, or 8-digit hexadecimal)
data : 1 byte of data (2-digit hexadecimal)

Data in each record is contiguous.
checksum : Checksum (2-digit hexadecimal)

The hexadecimal values from "cnt" to "checksum" are
delimited into 2-digit values, each interpreted as one byte
of data. This value is the complement of the lower 8 bits
of the sum of these bytes.

Header Record
The "data" item in the header record is a comment. The header record can
be omitted.

Part 5 Error Messages

 Chapter 1 Error Messages

 89

Chapter 1 Error Messages

1.1 Types of Error Message

There are three types of error message:
Warnings
Errors
Fatal errors

1.2 Error Message Format

Error messages take the following format:
<filename> <line number> : <tool>-<type>-<number> : <message>

test.asm 15: ASM870C-Error-200: Syntax error

 <filename> This the name of the file in which the error occurred. No filename is

displayed if the error was not related to a particular file. Normally, the
filename is displayed for errors in C Compiler, macro processor, assembler
processor, assembler, and linker command language files.

 <line number> This is the number of the line in which the error occurred. Normally, this is

displayed for errors for which the filename is displayed.

 <tool> This is the name of the tool (assembler, etc.) in which the error occurred.

 <type> This is the error type, described later.

Fatal
Error
Warning

 <number> This is the error number, described later.
Fatal : 0 to 99
Error : 200 to 499
Warning : 500 to 999

 <message> The message is a description of the error.

Part 5 Error Messages

90

Chapter 2 Driver Error Messages

2.1 Fatal Errors of Drivers

 <I/O Errors>
 20: Can't open "<filename>"

The driver cannot open the specified file. Common problems are that the
specified file does not exist, there is insufficient disk space to create a new
file (when opened in write mode), or that the file is write-protected.

 <Invocation Errors>
 100: No source file found in invocation

No source file was specified in the startup command.
 103: "<filename>" files are the same

The same filename is specified more than once.
 106: Missing parameter "<option>"

A required parameter was not specified or was specified incorrectly.
 109: Unrecognized option "<option>"

Wrong option specified.
 111: Can't nest a command file

A command file was specified within a command file, but command files
cannot be nested.

 112: Not allowed character "<option>"
The option parameter is not a numerical value.

 113: Invalid subargument "<option>"
Incorrectly specified option.

 114: Invalid argument "<option>"
Incorrectly specified option parameter.

 115: '-r' option requires '-o' option
You must specify a file output with the '-o' option when specifying the
TULINK option '-r'.

 116: Can't execute "<filename>"
The file specified in <filename> cannot be executed.

 Chapter 3 C Compiler Error Messages

 91

2.2 Warning Errors of Drivers

 520: The suffix not fit for output-file "<filename>"
Error in output file extension (suffix).

 521: Ignored option "<option>"
A reciprocal option was specified. The first specified option takes priority.

 522: Unknown suffix, "<filename>" used as "<extension>" file
Error in specified input file extension.

Chapter 3 C Compiler Error Messages
C Compiler is invoked by CC driver. Please refer the error message of
driver about CC driver.

3.1 Fatal Errors of C Compilers

<Runtime Errors>
 100: Too many errors

The number of errors exceeded the compiler limit (30).
< File-related errors >
 120: Cannot close file "<filename>"

The specified file cannot be closed.
 121: Cannot open file '<filename>'
 122: Cannot open temporary file

The specified file cannot be opened. Either the file does not exist or a file
which cannot be specified was specified. Error 122 occurs when the file
name is temporary file. Indicates that an intermediate file was not generated
during compiling.

 123: Cannot seek '(filename)'
An error occurred during file seek.

 124: Problems with input file
An error occurred during file read. The file may be corrupted.

 125: Problems with output file, probably out of disk space
An error occurred during file write. Available space in disk may not be
enough.

Part 5 Error Messages

92

 < Compiler limits >
 130: Compiler limit, out of space

Memory available for the compiler reached the limit. No more memory
available for the compiler.

 131: Compiler limit, too deep nesting of blocks
The number of nested blocks in the source program exceeded 16, its
maximum value.

 134: Compiler limit, too deep nesting of struct/union
The number of structure/union nesting levels exceeded 15, the compiler
limit. Reduce the number of nesting levels by using typedef and defining a
part of structure nesting as a different data type.

 136: Compiler limit, too many internal variables in 'function'
The number variables or types exceeded the compiler limit.

 137: Compiler limit, too many internal label
The number of internal variables exceeded the compiler limit because the
function is too large. Break up the function before compiling.

 138: Yacc stack overflow
Compiling the source program cannot continue because the work area for
analyzing the source program is insufficient. Occurs when the source
program is too complicated. Break up a large expression, especially an
expression including a comma operator. Break the expression at a location
where function calls are nested within an argument of a function call. Use a
function for the nested part.

< Fatal errors due to memory insufficiency >
 140: Out of memory

The area necessary for compiling cannot be obtained because system
memory is not sufficient.

 141: Out of near memory
Memory necessary for processing is not sufficient due to too many symbols
and variables.

 142: Too large function for optimization in '<function_name>'
Memory for optimization cannot be obtained. The function is too large to
be optimized. Break it up and compiling may be possible.

 Chapter 3 C Compiler Error Messages

 93

 < Limits exceeded >
 150: Too large string

The length of a character string exceeded the size of the compiler buffer.
The length of a character string after linkage is up to 512 characters.

 151: Too large string for inline assemble
The character string specified in the inline assembly statement is too large.

< Other fatal errors >
 160: Division by zero in '<function>'
 161: Remainder by zero in '<function>'

Division by zero or remainder by zero is performed in the source program.
Detected as a result of a constant operation. Division by zero or remainder
by zero cannot be detected during program execution. If division by zero or
remainder by zero is detected during preprocessing, 'Preprocessor' is
indicated instead of 'function name'.

 162: Memory control blocks destroyed
OS memory control blocks are destroyed. Re-start PC.

 163: Unexpected EOF in comment
The file ended before the end of a comment. Comments cannot be written
in more than one file, not can they be nested.

3.2 Errors of C Compilers

 < Token errors >
 200: Empty character constant

Null character constant "(two single quotations) was used as a character
constant. A character constant must contain at least one character.

 201: Illegal character '<Hexadecimal>'
 202: Illegal digit '<character>' for base '<radix>'

A character whose character code is hexadecimal appeared in the source
file. Such characters and Japanese characters cannot be used. The source
file may be corrupted, so check the contents of the file.

 203: Illegal escape sequence
An escape sequence is used in other than a character constant or a string
literal.

 204: Illegal hex constants
No hexadecimal character is written after 0x or \x indicating the start of a
hexadecimal constant.

Part 5 Error Messages

94

 205: Newline in char constant
A newline character is input before the end of a character constant (before
closing using '). Lines cannot be changed within a character constant.

 206: Newline in string
A newline character is input within a string literal. When writing a string
literal on two lines or more, write as follows: [By using a function to link
logical lines] Add a backslash "\" or Yen mark "\" just before a newline
character. [By using a function to link character strings] Write a character
string enclosed between ". If there is only a space character (includes tab
and newline) between character strings, the compiler links these character
strings.

 207: Unexpected exponent character '<character>'
A character other than a sign or numerical value is written after character
"e" or "E" representing exponent character.

 < Syntax errors >
 210: Constant expected

A constant expression is required. For example, an expression other than a
constant expression is written instead of an array size for array declaration.
 int a = 5;

 int b[a];

The above are wrong.
 211: Illegal break

A break statement is written in a statement other than a do, for, while, or
switch iteration statement.

 212: Illegal continue
A continue statement is written in a statement other than a do, for, or while
iteration statement.

 213: initialization needs {} in '<identifier>'
An initializer for an array, structure, or union must be enclosed by braces
{}.
 int a[1] = 1; /* wrong */

 int a [1] = { 1 }; /* correct */

 216: Syntax error at or near column ‘<column>’'
A syntax error occurred. The number of columns is <column>.

 Chapter 3 C Compiler Error Messages

 95

< Declaration and definition errors >
 221: Array of functions not allowed

An array of functions is not allowed. Nor can an array of void type be
accepted. The pointer type to the function may have been incorrectly
declared. The following shows an example of a pointer array to the function
that returns the int type.
 int (*f1[10])();

/* Correct: Pointer array to the function that returns the int type */
 int *f1[10]();

/* Incorrect: Array of functions that return a pointer to int */
 223: Cannot initialize extern '<identifier>' in block-scoped

A variable declared together with storage class specifier extern within a
block is initialized.

 224: Cannot use address of automatic variable as static initializer
An address of an object with automatic storage duration is used within an
initializer to an object with static storage duration.
 void func(void) {

 int i;

 static int *p1 = &i; /* wrong */

 int *p2 = &i; /* correct*/

 225: Duplicate signed/unsigned keywords
Both "signed" and "unsigned" are used within one declaration. Chose one.

 226: Duplicate storage class specified
Two or more storage classes are specified within one declaration.

 227: Expected formal-parameter list
An argument list instead of a parameter list is used for function definition.
 /* wrong */ /* correct*/
 void func(int) void func(int arg)

 { {

Part 5 Error Messages

96

 228: Function illegal in struct/union '<identifier>'
A function is declared as a structure/union member. Declaration of pointer
type to a function may be wrong.
 struct f {

 int (*f1)(void);

/* correct: pointer to a function which returns int */
 int *f1(void);

 }

/* wrong: function which returns a pointer to int */
 229: Illegal bit field type '<bit fileld>'

Illegal bit field type (such as pointer or floating point type) is specified. Bit
field types are the following (to which signed or unsigned can also be
added): char, short, int, long.

 230: Illegal declaration '<storage class specifier>'
The specified storage class specifier cannot be used.

 231: Illegal function return type, cannot return array type
Array type is specified as function return value type. Pointer type to an
array can be specified as return value type.

 232: Illegal function return type, cannot return function type
Function type is specified as function return value type. Pointer type to a
function can be specified as return value type.

 233: Illegal initialization
Initialization specification is illegal. Occurs when an initialization value is
other than a constant expression or the comma operator is used in an
initialization expression.

 235: Illegal type combination '<type specifier>'
Some type specifiers cannot be used within the same declaration.
Given below is an example:
 short long int i;

 236: Illegal void type '<identifier>'
An attempt was made to declare a void type variable. Declaration of pointer
(incomplete type) to a void type variable or void can only be used to declare
a function without a return value or to indicate no arguments for function
declaration.

 Chapter 3 C Compiler Error Messages

 97

 237: Illegal zero sized member '<member>'
Array without size (array with no subscript, or subscript is 0) is declared as
a structure/union member. An array without size can only be declared as
the last member of a structure/union.

 239: Negative subscript
A negative value is specified as the size in an array type declaration.

 240: Non-address expression
An address is required for an initialization expression. An error will occur
in the examples below:
 int a;

 int *b = a;

 241: Non-constant initializer
The initializer is not a constant.

 243: Null dimension
When defining a multi-dimensional array, other than at the first dimension,
subscript values must be defined.

 244: Prototype must have parameter types '<function>'
When declaring a function prototype, argument types must be specified
using parameter type definition.
 void func1(int arg1, int arg2); /* correct*/

 void func2(int arg1, arg2); /* wrong */

 void func3(arg1, arg2); /* wrong */

 void func3(); /* not prototype declaration */

The last example is an old-style function declaration. It is not wrong, but it
is not a prototype declaration, either.

 245: Too many initializers
Number of initializers larger than the number of objects to be initialized is
specified.

 246: Zero size bit field '<identifier>'
0 is specified as the width of a named bit field.

Part 5 Error Messages

98

< Undefined errors >
 250: Illegal struct/union name for member .'<member>'

The left operand of a component selection operator is not structure or union
type. When the left operand is an undefined identifier, it is regarded as an
int type variable. Thus, this error occurs.

 251: Illegal struct/union pointer name for member ->'<member>'
The left operand of a component selection operator is not a pointer to
structure or union type. When the left operand is an undefined identifier, it
is regarded as an int-type variable. Thus, this error occurs.

 252: Undefined struct/union '<identifier>' of '<tag>'
A structure/union with a <tag name> is not defined, therefore, <identifier>
cannot be declared as a structure/union. This error also occurs when an
attempt is made to initialize an unnamed union.

 253: Undefined struct/union '<identifier>', left of '<operator>'
An undefined structure/union is used in the left operand expression of the
component selection operator ("->" or ".").

 254: Unknown size '<identifier>'
Array without size was declared as a temporary named variable (auto
variable).

 255: Unnamed first member of struct '<tag>'
Structure declaration starts with a member with an unnamed bit field.

 256: '<identifier>' undefined
An attempt was made to use an undefined identifier. This error also occurs
when a used label is not defined within a function.

< Double definition errors >
 260: Duplicate case in switch '<value>'

The same value is used twice for case labels in one switch statement.
 261: Duplicate default in switch

Two or more default labels are written in one switch statement.

 Chapter 3 C Compiler Error Messages

 99

 262: Redeclaration of '<identifier>'
An attempt was made to define an already-defined <identifier>. Listed
below are possible causes:
<identifier> is already declared as a tag name for structure/union or
enumeration type.
The function of <identifier> was defined twice or more.
The object of <identifier> was defined twice or more.
<identifier> was declared twice or more in different types.
<identifier> was used twice or more in one structure/union or enumeration
type.
The label of <identifier> was defined twice or more within one function.

 263: Redeclaration of struct/union/enum/tag ‘<tag>’
An attempt was made to declare the <tag name> that had already been used
in the struct, union, or enumeration declaration.

 264: Redeclaration of struct/union member ‘<member>’
An attempt was made to declare members of the same name in the struct or
union declaration.

 < Operand errors >
 270: Bad left/right operand '<operator>'

Operand type of the operator is illegal.
 271: Illegal cast

An attempt was made to convert a type which cannot be converted. The
type conversion in the example below is not allowed.
 int a;

 struct st{ int a1, b1;} st1;

 st1 = (struct st)a;

 272: Illegal indirection
Pointer operator "*" is used for a non-pointer value.

 273: Illegal sizeof
The operand of sizeof operator must be either an object name or a type
name.

 274: Illegal struct/union type, use '->'
Component selection operator "." is used as a pointer to a member of a
structure/union. When specifying the member of a structure/union pointed
to by a pointer, use operator "->".

Part 5 Error Messages

100

 275: Illegal struct/union pointer type, use '.'
Component selection operator "." is used for a structure/union object. When
specifying a member of a structure/union object, use operator ".".

 276: Illegal subscript
Operator "[]" is used for an object of other than array or pointer type.

 277: Unacceptable operand of '&'
The operand of address operator "l&l" is illegal. The following cannot be
used as operands for the address operator.

bit field
register variable
value other than left-side value

 278: ‘<member>’ not member of struct/union
The <member name> is not a struct or union member.

< Expression errors >
 280: Cannot cast void to non-void

Type void cannot be converted into another type. Type void indicates that
the function does not return a value. A pointer to void type cannot be
converted into a pointer to another type.

/* wrong: cast of void */
 void func1(int arg);

 int a = (int) func1(1);

/* correct: cast of pointer to void type */
 void *func2(int arg);

 int *a = (int *)func2(1);

 281: Illegal actual parameter '<value>'th of '<function>'
At a function call, an argument has an error. <number> represents the
argument number.

 282: Illegal cast to array type
Object type is converted into array.

 283: Illegal cast to function type
Object type is converted into function.

 284: Illegal compare struct/union
Comparison between structures or unions is not allowed. Compare
members of a structure or of a union.

 Chapter 3 C Compiler Error Messages

 101

 285: Illegal function
A function is called using an identifier which is not declared as function
type, or an expression which is not a pointer to a function.

 286: Illegal index, non-integral
Value of an array subscript expression is not integer type.

 288: Illegal operand '<operator>'
The operand is used incorrectly.

 289: Illegal operator '%s' for struct/union
The structure or union cannot be operated on by the specified operator.

 291: Incompatible types '<identifier>'
Operation on incompatible types is performed.

 292: Invalid addition, pointer to pointer
Addition between pointer types is performed.

 293: Invalid addition/subtranction, pointer to non-integral value
Addition or subtraction between pointer type and non-integer value is
performed.

 294: Invalid subtranction, pointer from non-pointer
Attempt is made to subtract a pointer type value from a non-pointer type
value.

 295: Lvalue required '<operator>'
The left operand of the operator must be a left-side value.

 296: Lvalue specifies const object
Const type object value is used as a left-side value. Operation to change a
const type object value is not allowed.

 298: Non-integral in switch expression
The result of evaluating a switch expression is not an integer value.

 300: Void type in expression
A void expression is used in a control expression of the if, while, for, or do
statement. A void type function (function without a return value) cannot be
used in a control expression. The expression type cannot be changed into
void.

 301: '<operator>' needs lvalue
The operand of the operator must be a left-side value.

Part 5 Error Messages

102

< Preprocessor errors >
 310: Cannot open #include file "<filename>"

The #include file <file name> cold not be found.
 311: Illegal identifier '<identifier>' found in defined-operator

An unspecifiable <identifier> is used in the defined phrase of the #if or #elif
statement.

 313: Illegal macro name
An invalid identifier is specified as a macro name.

 314: Illegal macro parameter '<parameter>'
An invalid character is specified as an argument in a function-type macro
name definition.

 316: Illegal #elif
The #elif is used incorrectly. The probable cause is that the corresponding
#if, #ifdef, or #ifndef is missing.

 317: Illegal #else
The #else is used incorrectly. The probable cause is that the corresponding
#if, #ifdef, or #ifndef is missing.

 318: Illegal #include filename
The file name specified in the #include command is incorrect.

 319: Illegal #line filename
The file name specified in directive #line is illegal.

 320: Illegal #line number
The line number specified in directive #line is illegal. Specify an integer
from 1 to 65535.

 322: Macro ‘<identifier>’ redefined
Replacement contents differ in redefinition of the macro.

 324: Too long token
The token name is excessively long. Specify it within 512 characters as an
identifier or within 32 characters as a replacement character of the function
format.

 325: Too many #else
Usage of #else is incorrect. You've already used #else in the corresponding
#if, #ifdef, or #ifndef.

 326: Unexpected EOF in macro '<identifier>'
An EOF code is found in the macro call.

 327: Unexpected EOF in #if/#ifdef/#ifndef
An EOF code is found in the #if, #ifdef, or #ifndef clause.

 Chapter 3 C Compiler Error Messages

 103

 328: Unexpected #endif
The corresponding #ifdef is missing.

 329: Unknown preprocessor command
The preprocessor command is invalid.

 330: #elif following #else
The #elif command is written after the #else command.

 331: #error '%s'
The #error command will be executed.

 332: ')' not found in '<operator>'
Replacement contents differ in redefinition of the macro.

 < Limits exceeded >
 340: Too large bit field '<bit field>'

Number of bits larger than the standard number is specified at bit field
declaration. For example, the specification below is illegal.
 struct bitfield { int f1:40; char f2:10; };

 341: Too many characters in constant
A number of characters exceeding the size of the int type are specified in the
character constant.

 342: Constant too big
Constant value exceeds the range in which a value can be expressed by the
specified type.

 343: Out of range for enum constant
Enumeration constant exceeds the range in which a value can be expressed
by int type.

< ANSI standards errors >
 350: Bit field '<bit field>' must have type of int

Types which can be specified as bit field type in the ISO/ANSI C standards
are as follows: int, signed int, and unsigned int. This error occurs only
when compiling using option -Xa.

Part 5 Error Messages

104

 351: Function '<function>' storage class must be extern
A function is declared within a block, but extern is not declared. This error
occurs when option -Xa is valid. Given below is an example of error
generation:
 main()

 {

 static int func1();

 ...

 }

 352: Illegal lvalue
Since the operand is not a left-side value, it cannot be converted to the
pointer type. This error occurs only when the -Xa option is used to compile
the source files.

< Compiler limits exceeded >
 360: Compiler limit, too deep nesting of #if/#ifdef/#ifndef

The nesting level of #if , #ifdef, and #ifndef exceeded 31, the compiler limit.
 361: Compiler limit, too deep nesting of #include

The nesting level of # include exceeded 31, the compiler limit.
 362: Compiler limit, too large array

The array size exceeded, the compiler limit.
 363: Compiler limit, too many declaration

The number of qualifiers exceeds the compiler limit (12 levels).
 364: Compiler limit, too many parameter

The number of arguments of a function exceeded 31, the compiler limit.
 365: Compiler limit, too many -I options

The number of specifications of option -I exceeded 31, the compiler limit.
 366: Compiler limit, too many -D options

The number of specifications of option -D exceeded 255, the compiler limit.
 367: Compiler limit, too many -U options

The number of specifications of option -U exceeded 255, the compiler limit.
< Errors related to extension function >
 370: Bad inline assemble construction

Syntax for _asm is illegal.

 Chapter 3 C Compiler Error Messages

 105

 371: Duplicate function attribute
Two or more function qualifiers (eg, _cdec1) were specified within one
declaration. For example, an error occurs to the following declaration:
 typedef int __adecl AINT(void);

 AINT __cdecl func;

 372: Illegal function call, function defined __interrupt or __regbank
_interrupt type functions cannot be called from a C program.

 373: Illegal function return type
_interrupt type functions must be void or no specification (regarded as
void).

 374: Illegal parameter type list
_interrupt type functions cannot specify parameters.

 375: Illegal pointer type, different function attribute
The pointer type is used erroneously because the function attribute is
incorrect.

 385: Illegal function type for inline/builtin-function '<function>'
The specified function cannot be made into the in line function.

 < Others >
 390: Division/remainder by zero

Divisor 0 or remainder 0 occurred during evaluation of a constant
expression.

 391: Static function '<function>' not found
Function declared as static was not defined. Function declared as static
must be defined within one translation unit.

< Errors of preprocessor >
 400: Illegal pointer size

The pointer size specification is illegal.
 401: Illegal displacement size

The displacement size specification is illegal.
 402: Illegal section size

The section size specification is illegal.
 403: Illegal assignment of flag register '<register>'

A flag register cannot be assigned.
 404: Duplicate memory size

Two or more memory sizes are included.

Part 5 Error Messages

106

 406: Cannot initialize io variable
An initial value cannot be specified for variable io.

 407: Cannot declare io variable in block-scoped
Variable io cannot be specified within a block.

 408: Not support keyword '__<keyword>'
The extended reserved word specified here is not supported.

3.3 Warnings of C Compiler

 The number in parenthesis which follows to error messages shows a
warning level.

 (1) Level 1 Normal warning (Default -w1)
 (2) Level 2 Middle warning (-w2)
 (3) Level 3 Detail warning (-w3)
 In warning level 3, when a program is not exactly written, the warning

message is output. The description which may cause a mistake can be
checked.

 Note what the message meaning says, because the same message is shown
with different levels according to circumstances.

< Warnings of option >
 500: Duplicate option '<option>' (1)
 The same option is specified twice or more.
 501: Illegal option '<option>' (1)
 Specification of the option is illegal. This option is ignored.
 503: Option '<option>' requires an argument (1)
 The parameter is not specified for the option which necessitates the

parameter. This option is ignored.

< Warnings of discarding data >
 510: Floating-point overflow (2)
 A floating point operation exception such as overflow or underflow

occurred during a constant operation on a floating point number at compile.
This error also occurs when a constant is written exceeding the range which
floating point type can handle. The compiler continues the operation,
regarding the operation result as 0.0.

 Chapter 3 C Compiler Error Messages

 107

 511: Out of range in hex escape sequence '<Hexadecimal_constant>' (1)
 The number of digits in the hexadecimal escape sequence of a character

constant or string literal exceeded 9 characters. A hexadecimal constant of
9 digits or more exceeds the range in which a value can be represented by
long int; therefore, the conversion result may be incorrect.

 513: Too many initialize for array '<identifier>' (1)
 The number of initializers for the specified array is too large. The excess

initializers are ignored.
 514: Type conversion, possible loss of data (2)
 Values of different base types were specified in one expression. The type of

one of them was converted. During type conversion, data were discarded.
 515: Too long identifier, truncated to '<identifier>' (1)
 The identifier was too long; characters following the 32nd character were

discarded. After characters were discarded, different identifiers may be
regarded as the same.

 516: Integral overflow (2)
 The operation result exceeds the range which can be represented by integer.
 517: Too big for character (1)
 The internal code of the character constant exceeds the range which can be

handled.

< Warnings of undefine >
 521: Undefined return type in '<function>' (3)
 A function which is not declared or defined is used. Compiling continues

regarding the function as one which returns an int type value.
 522: Unnamed struct/union as parameter (3)
 This warning only occurs when a function without a prototype declaration is

used. A tag name is not declared for a structure/union written in an
argument for a function call. A structure/union without a tag name declared
cannot be used for parameter declaration. A function with structure/union
as a parameter cannot be defined. Thus, the function call may be illegal.

 523: Undefined struct/union '<tag-name>' (3)
 An undefined structure/union is used. They are compiled as a

structure/union without members. (Undefined structure/union without
identifiers is a warning of level 3.)

Part 5 Error Messages

108

< warnings of unnecessary declaration/description >
 530: Duplicate type qualifier (1)
 The same qualifier (const or volatile) or type specifier (signed or unsigned)

was used twice or more. For example, this warning is output in the
following case:

 const const int cint;
 531: No identifier declared (2)
 A null declaration is made, so it was ignored. Given below is an example of

a null declaration:
 int ;
 532: Untagged enum/struct/union declared no symbols (2)
 A null declaration using an untagged enumeration/structure/union is made.

This declaration is ignored. For example, this warning is output in the
following case:

 struct {

 int m1, m2;

 };

 534: '<type>' may be used on integral types only (1)
 Signed or unsigned is used for a type other than integer. The specification

is ignored.
 536: No use memory size (1)
 Displacement and specifying I/O variables can not be executed.
 (ex. auto variable, etc.)
 537: Label '<label>' defined but not used in function (3)
 A label which is not used is included.
 538: Statement not reached (1)
 A statement which is not executed is included.

< Descriptions which might cause errors >
 540: Assignment in conditional expression (3)
 The result of an assignment expression is used as a conditional expression.

For example, this warning is output in the following case:
 if (result = func(1))...
 Assignment operator "=" instead of equality operator "==" is often used by

mistake. This warning is used to prevent such mistakes.

 Chapter 3 C Compiler Error Messages

 109

 541: Case constant '<value>' too big for the type of switch expression (1)
 Case label value exceeded the range in which values can be represented by

the conditional expression type in the switch statement. The case label
value is converted into conditional expression type. Note that values which
are different before conversion may become the same as a result of the
conversion.

 542: Comma operator in array index expression (3)
 Comma operator is used in an array subscript expression. For example, this

warning is output in the following case:
 array[dim1, dim2]

 This warning is used to check whether a subscript expression is correct,
because in some languages, multi-dimensional array subscripts are
delimited using commas.

 543: Constant in conditional expression (3)
 A constant is specified in an if or while conditional expression. This

warning is just for information.
 544: Const object '<object>' should be initialized (3)
 A value cannot be assigned to a const object unless the object is initialized

using an initializer at definition. If the declaration of a const object is
tentative, declaration "const it i;" causes this warning. If the initial value is
specified by another translation unit, declare it explicitly as "extern const int
i;". Then the warning will not be output.

Part 5 Error Messages

110

 545: Illegal assignment, const/volatile qualifier mismatch (1)
 A pointer to an object which was declared as const or volatile is assigned to

a pointer to an object which was not declared as const or volatile. As a
result, the compiler may not be able to handle the object correctly.

 const int a;
 const int *cp = &a;
 int *np = cp; /* warning */
 cp = 1; / error */
 np = 1; / not error */

 In the last line in the above example, np is not a pointer to a const object, so
the compiler cannot check assignment to const object a. To avoid this
mistake, a warning is output at assignment to a pointer.

 546: Illegal conversion, integral type mismatch (3)
 During conversion of two integer values, data are lost. For example, this

warning is output in the following case:
 short v_short;
 long v_long;
 v_short = v_long;

 547: Illegal conversion, floating type mismatch (3)
 During conversion of two floating point values, data are lost. For example,

this warning is output in the following case:
 float v_float;

 double v_double;

 v_float = v_double;

 548: Illegal pointer operation '<operator>', array's subscript mismatch (1)
 A pointer to an array of different size is used in the expression. The pointer

value was used unchanged.
 549: Illegal pointer operation '<operator>', indirection level mismatch (1)
 Contradictory indirect reference was made. The pointer value is used

unchanged if both operands are arithmetic, pointer, or array type; or one of
the operands is array type. If one operand is arithmetic type and the other is
pointer or array type, the type of the arithmetic operand is converted into the
type of the other. This warning is output in the following example; the
pointer value is not changed but assigned as-is.

 char **argv;
 char *a;
 a = argv; /* warning */

 Chapter 3 C Compiler Error Messages

 111

 550: Illegal pointer operation '<operator>', type mismatch (1)
 There is a pointer to an object of a different type in the pointer expression

used together with the above operator. The value was used unchanged. For
example, this warning is output in the following case:

 struct st1 *p1;

 struct st2 *p2;

 p2 = p1; /* warning */

 551: Logical operation '<operator>' on address of string constant (3)
 A logical operation using a string literal address is performed. For example,

this warning is output in the following example:
 char *str = "Hello";

 if (str == "Hello") {...

 In the above if statement, the contents of the string literal are not compared.
This warning is used to prevent such mistakes. Use function strcmp to
compare the contents of a string literal.

 552: Meaningless statement (2)
 Meaningless statement is written.
 553: No return value in '<function>' (1)
 A return statement is not written in a function which is declared for a return

value (warning level 1). If the warning level is set to 3, this warning is
output even if a return statement is specified that is used to return a value to
a function regarded as int because of no return value type.

 556: '<identifier>' used before set in '<function>' (3)
 A variable which has had no value set is referenced.
 557: Redeclaration of '<identifier>', array's subscript mismatch (1)
 Different array elements are declared.
 558: Multiple comparison operator in expression (3)
 Comparison operations are written twice or more.
 559: Out of range for array (3)
 Accessing is executed out of the range for the specified array.

Part 5 Error Messages

112

< Warnings to specifications >
 560: Bad storage class '<identifier>' (1)
 A storage class identifier which cannot be used is specified. The compiler

continues processing regarding one of the following default storage classes
as specified.

 function extern
 parameter, local variable auto
 global variable no storage class specification
 561: Cannot return value for void function (1)
 A return statement is written within a function declared as void, which does

not return a value.
 563: Storage-class specifier after type (3)
 Storage class specifier, auto, extern, register, or static, is declared after the

type specifier. For example, this warning is output in the following
declaration:

 short int auto i;
 In the new style, the storage class specifier is specified at the beginning.

However, the compiler regards the storage specifier as at the beginning of
the declaration even if it was not.

 564: Illegal zero sized member '<identifier>' (3)
 The specified structure/union member does not have a subscript or includes

an array with subscript 0. (level 1)
 The specified structure/union member does not have a subscript or includes

only an array with subscript 0. (level 3)
 565: Redeclaration of '<function>', class mismatch (3)
 The function is defined in different storage class again.
 When an extension specification is used, not errors but level 3 warning is

output.
 In ANSI specification, an error is output.

< Warnings for prototype >
 571: Illegal declaration with formal argument list (1)
 Parameters are not declared for definition of a function which was declared

as using parameters. In subsequent function calls, the function is regarded
as not using arguments.

 Chapter 3 C Compiler Error Messages

 113

 572: Illegal assignment of function's pointer, different parameter lists (1)
 A value is assigned to a pointer to a function. The parameter lists of the

function pointed to by this pointer and by another pointer are different. The
compiler continues without changing the value.

 573: Illegal declaration without formal argument list (1)
 Parameters are declared in the definition of a function which was declared

as not using arguments (void). After the definition, the function is regarded
as having arguments defined.

 574: Illegal function call '<function>', declared with void (1)
 A pointer type specified as an argument differs from the pointer type given

to a parameter at function declaration or definition. The argument value is
passed unchanged.

 577: Illegal function call '<function>', too few actual parameters (1)
 The number of arguments specified for a function call is smaller than the

number of parameters declared at function declaration or definition. Only
the specified arguments are passed to the function, therefore, the function
may not operate correctly.

 578: Illegal function call '<function>', too many actual parameters (1)
 The number of arguments specified for a function call is larger than the

number of parameters declared at function efinition. The excess arguments
are passed to the function according to the rules for function calls.

 579: Illegal function call '<function>', type conversion (1)
 The base type of arguments differ from that of parameters. The base type of

arguments is converted into that of parameters; however, data may be lost
due to the conversion.

 580: Illegal prototype in '<number>'th parameter (1)
 The same function is declared twice or more but the parameter list types do

not match. <number> indicates the location (from the start parameter) of
the parameter whose type is different.

 581: Different declaration parameter list from definition (1)
 The type of the argument list at function declaration differs from the type of

the parameter list at function definition. The parameter list at function
definition is used instead of the argument list at function declaration.

 582: No function prototype '<function>' (2)
 A function whose prototype is not declared is called. Compiling is

performed to call a function without prototype declaration according to the
rules for defaults.

Part 5 Error Messages

114

 583: Parameter type mismatch, '<value>'th parameter of '<function>' (1)
 An argument of a different type was passed instead of the parameter

specified at function definition
 584: Parameter number mismatch in prototype (1)
 The same function is declared twice or more. The number of parameters is

different for each declaration.
 585: Uses old-style declarator '<function>' (3)
 Function declaration and definition are old-style. This warning is output to

check old-style declaration to avoid passing the wrong number of arguments
or type because old-style declarations have no parameter type data.

 int strlen(const char *string);

 /* new-style function declaration */

 int strlen(const char *string)

 {

 ...

 }

 /* old-style function declaration */

 int strlen();

 /* old-style function declaration */

 int strlen(string)

 char *string;

 {

 ...

 }

 586: No use in formal-parameter list '<identifier>' (1)
 When function definition is old-style, a type which is not used is defined.
 587: Illegal function's pointer type, different return type (1)

The function pointer is used erroneously because the type of return value is
incorrect.

< Warnings of preprocessor >
 591: Illegal/missing macro name (1)
 An invalid macro name is specified or the macro name is not specified.
 592: Illegal macro call '<macro name>', mismatched number of paramters (1)
 The number of arguments in a function format macro call does not match

the number of arguments in the macro definition.

 Chapter 3 C Compiler Error Messages

 115

 596: Illegal ##, beginning of a macro definition (1)
 The macro definition replacement list starts with a ## operator.
 597: Illegal ##, ending of a macro definition (1)
 The macro definition replacement list ends with a ## operator.
 598: Macro formal parameter expected after # (1)
 The operand after a # operator in a macro definition must be a parameter

name.
 599: Unexpected character after directive, ignored (1)
 An invalid character string is specified after a macro processor directive.

The character string is ignored.

< Warnings of progra >
 610: #pragma keyword expected, '<token>' found (1)
 <token> after #pragma was not identified as a command. #pragma directive

is ignored.
 611: #pragma [on | off] expected (1)
 #pragma directive needs an on or off parameter, but the parameter was not

specified or the specified parameter was not identified. This directive is
ignored.

 612: #pragma [1 | 2 | 4] expected (1)
 #pragma directive needs a 1, 2, or 4 parameter, but the specified parameter

was not identified.
 615: Unexpect #pragma token '<token>'
 An unnecessary token was found in the argument list of #pragma directive.

The remaining part of this directive is ignored.
 616: Cannot use #pragma disinterrupt for inline/builtin-function (1)

A disinterrupt function definition is specified for the inline function. Since
this function expands code directly, disinterrupt cannot be specified for it.
This #pragma command will be ignored.

 618: Unknown #pragma (1)
 #pragma directive not supported by the compiler is used. This directive is

ignored.
 619: Cannot use #pragma in initializing (1)
 #pragma directive is used in the middle of initializing.

Part 5 Error Messages

116

< Others >
 620: Cannot use function attribute '<identifier>' (1)
 An identifier is declared as a non-function or a non-pointer to a function, but

a function qualifier was found in the declaration. The function qualifier is
ignored.

 621: Illegal escape sequence '<character>' (1)
 <character> after a backslash "\" or "´" in a character constant or string

literal cannot be used as an escape sequence. The character code is used
unchanged as the value.

 622: Sizeof returns 0 (1)
 The size of the operand of the sizeof operator is 0.
 623: Type definition in formal parameter list '<tag>' (1)
 624: Type definition in formal parameter list (no tag) (1)
 Structure/union/enumeration type is declared in a formal parameter list.

This declaration is regarded as an external declaration. If untagged
structure/union/enumeration type was declared, the tag name is indicated as
"no tag".

 626: '*/' found outside of comment (1)
 "*/" is written outside a comment. The compiler assumes a space between

"*" and "/" and continues processing. For example, the warning is output in
the following case:

 int */* comment */ptr;
 After processing the above, the following is regarded as:
 int *ptr;
 631: '/<character>' found inside of comment (3)
 "/*" and "//" are found in a comment.
 This description is ignored.
 632: Static function '<function>' not found (1)
 Static function which has no entities is found.
 633: Illegal assignment of register (1)
 The value of pseudo-variables may be invalid.
 634: Too large function `<function_name>', optimize not performed (2)
 Several optimization cannot be done because the function is too large.
 635: Too much register pseudo-variable use, value may be invalid (1)
 The value may be invalid because of the pseudo-variables are used too

much.

 Chapter 3 C Compiler Error Messages

 117

<Warnings of processor dependent extension function>
 650: Illegal pointer size (1)
 A pointer, which cannot be used, is specified.
 651: Illegal displacement size (1)
 A displacement, which cannot be used, is specified.

 652: Illegal section size (1)
 A section, which cannot be used, is specified.
 653: Illegal pointer operation '<operator>', pointer size mismatch (1)
 In a pointer expression used with this operator, a pointer, which is used for a

different object type, is found.

Part 5 Error Messages

118

Chapter 4 Assembler Error Messages

4.1 Assembler Fatal Errors

 <I/O Errors>
 20: Can't open "<filename>"

Assembler preprocessor cannot open the specified file. Common problems
are that the specified file does not exist, there is insufficient disk space to
create a new file, or that the file is write-protected (when opened in write
mode). Note that, when a work file is specified, the file is created in the
directory (drive) indicated by the TMP environment variable.

 21: Can't close "<filename>"
Cannot close the specified file.

 22: Can't read "<filename>"
Cannot read the specified file.

 23: Can't write "<filename>"
Cannot write to the specified file. The main cause of this error is that there
is insufficient space for the file. Note that, when the file is a working file, it
is created in the directory (drive) indicated by the TMP environment
variable.

 24: Can't seek "<filename>"
Cannot perform a seek on the specified file.

 <Invocation Errors>
 100: No source file found in invocation

No source file was specified in the startup command.
 101: Illegal file specification

The file specification is illegal..
 102: File must be a disk

You cannot specify a file other than a disk file. CON, PRN, AUX, COM1
and COM2 have specific meanings under OS and cannot be specified.

 Chapter 4 Assembler Error Messages

 119

 103: "<filename>" files are the same
The same file name was specified more than once.

 104: Duplicated source file name
The source file name was duplicated.

 105: Bad parameter syntax
A parameter of an option contravenes the entry rules.

 106: Missing parameter "<option>"
A parameter which should be specified for an option is missing.

 107: Illegal sub option in '-l'
The '-l' suboption specification is invalid.

 109: Unrecognized option "<option>"
An invalid option was specified.

 110: Numeric constant out of range
The numeric value is out of range.

 111: Can't nest a command file
The command file is nested.

 <Execution Errors>
 150: Internal(system) error

An internal error other than those listed below occurred. This should not
normally occur.

 152: Illegal source format
The source file format is not suitable for environment.

 154: Internal object file error
The object file is abnormal.

 155: Too many expressions
Too many expressions or expressions are too complex. Combine the
expressions into simpler expressions.

 156: Optimization table overflow
The optimization table overflowed.

 158: String table overflow
The string table overflowed.

 160: Symbol table overflow
The symbol table overflowed. Delete unused symbols, divide the source file
being assembled into smaller files or increase the amount of memory.

Part 5 Error Messages

120

 161: Out of memory
The working memory area was insufficient. Divide the source file being
assembled into smaller files or increase the amount of memory.

 163: Too many “file” instructions
“file” instructions of debug information are too many.
Decrease the include files of one C source file.

4.2 Assembler Errors

 200: Syntax error
An error other than those listed below occurred.

 201: Attempt to divide by zero
A divide by zero occurred.

 202: Illegal numeric constant
A numeric constant was invalid. Common causes are specifying characters
which cannot be used in numeric expressions.

 203: Multi-defined symbol "<symbol>"
The symbol is already defined. Re-definition or multiple definition is not
allowed. This definition is ignored. When accompanied by an instruction to
output the object, '00' is output.

 204: Invalid relocatable expression
An invalid relocatable expression. The majority of relocatable expression
operations are permitted, but in operations, such as specifying the number of
shift bits in an operand shift operation, a relocatable expression cannot be
used.

 205: Unbalanced parentheses
A parentheses structure is invalid.

 206: Invalid expression
Invalid expression.

 208: Illegal label or variable
Invalid label or variable.

 209: Illegal character string
Invalid character string.

 210: Not allowed public attribute
Directive names such as section names cannot be declared as PUBLIC. The
instruction is ignored.

 Chapter 4 Assembler Error Messages

 121

 212: Illegal SECTION directive
An invalid SECTION directive. The section definition is ignored and the
previous section continued.

 215: No section definition
Instructions are entered without a section definition.

 216: Invalid section attribute
The section attributes of a directive such as SECTION and EXTERN is
invalid. The instruction is ignored.

 217: Absolute section error
Absolute section addresses overlap.

 218: Illegal control
Invalid control statement. The control statement is ignored.

 220: Reference to multi-defined symbol
A multiply defined symbol was referenced.

 221: Undefined symbol
An undefined symbol was referenced.

 222: Absolute expression expected
A relocatable value cannot be used. the instruction is ignored.

 223: Not allowed forward reference
Forward references are not allowed. the instruction is ignored.

 225: Not allowed section reference
Section names can not be referenced.

 226: Illegal symbol reference
An invalid reference. For example referencing a symbol from a different
section.

 227: Out of range for relative reference
A relative branch instruction exceeds the branch range.

 228: Overflow in location counter
A location counter exceeds the section size specification range. The location
counter counts up unchanged and processing is continued.

 229: Location counter can't point lower address
The specified address value is less than the current location counter. The
instruction is ignored.

 230: Operand type mismatch
The operand, or mnemonic and operand, types do not match.

 231: Too few or many operands
Too few or too many operands were specified.

Part 5 Error Messages

122

 232: Section "<section_name>" does not exist
The section specified as a sizeof or startof operator parameter does not exist.

 234: The nesting level isexceeded
Files are nested exceeding the maximum nesting level.

 300: Illegal operand value for CALLV or CALLP
An operand value of CALLV or CALLP is out of range.

4.3 Assembler Warning Errors
 500: Illegal string constant

Invalid string constant. The string constant exceeds four characters. The
fifth and subsequent characters are discarded.

 501: Operand value is out of range
The operand value is out of range. The required number of bits, from the
least significant, are extracted. Consequently, negative values may
sometimes be converted to positive values.

 502: Too long title
The title exceeds 60 characters. Only the first 60 characters are significant.

 503: Some optimizations lost
Non-optimized labels remain.

 504: Invalid instruction in this section
Invalid position for a machine instruction. The machine instruction itself
will be correctly assembled. For example, if a machine instruction is entered
in the data section, object code will be produced in the data section and the
data section location counter updated.

 505: Invalid directive in this section
Invalid position for a directive. The directive itself will be correctly
assembled. For example, if a dt or dft directive is entered in the code
section, data will be produced in the code section and the code section
location counter updated. The same applies to ds directive outside the data
section.

 506: No END directive
No END directive at the end of the source file. It is treated as if the directive
was present.

 507: Text found after END statement
Source statements continue after the END directive. Source statements after
the END directive are not assembled. Only the source lines are output in the
assemble listing.

 508: Invalid value in ALIGN directive
A numeric value is out of range in an ALIGN directive.

 509: Duplicated MODULE directive
A MODULE directive has been redefined. The second and subsequent
MODULE definitions are ignored.

 510: Ignored this TITLE
As NOLIST or similar was specified, this TITLE was ignored.

 Chapter 5 TULINK Error Messages

 123

 511: Ignored this EJECT
As NOLIST or similar was specified, this EJECT was ignored.

 512: SAVE stack overflow
SAVE instruction nesting has exceeded eight levels. The SAVE instruction
was ignored.

 514: Source file empty
No source statements. A list file containing only the header is output.

 515: Illegal parameter
Invalid parameter specification or multi defined parameter. The parameter is
ignored.

 516: Illegal escape sequence
Invalid escape sequence. The escape sequence is ignored. When it is a
numeric value the higher order is discarded.

 517: This section already has a different attribute
A section of the same name has already been defined with a different type.
The section definition is ignored and the preceding section continued.

 518: The floating-point type is not correct.
The floating constant type is not correct.

 550: Can't create a sort table, display symbols at random
The symbol table cannot be sorted due to lack of memory. Processing
continues without sorting the symbol table.

Chapter 5 TULINK Error Messages

5.1 TULINK Fatal Errors

 <I/O Errors>
 20: Can't open "<filename>"

Cannot open the specified file. Common problems are that the specified file
does not exist, there is insufficient disk space to create a new file, or that the
file is write-protected (when opened in write mode). Note that, when a work
file is specified, the file is created in the directory (drive) indicated by the
TMP environment variable.

 21: Can't close "<filename>"
Cannot close the specified file.

 22: Can't read "<filename>"
Cannot read the specified file.

Part 5 Error Messages

124

 23: Can't write "<filename>"
Cannot write to the specified file. The main cause of this error is that there
is insufficient space for the file. Note that, when the file is a working file, it
is created in the directory (drive) indicated by the TMP environment
variable.

 24: Can't seek "<filename>"
Cannot perform a seek on the specified file.

 <Invocation Errors>
 100: No source file found in invocation

No source file was specified in the startup command.
 101: Illegal file specification

The file specification is illegal.
 103: "<filename>" files are the same

The same file name was specified more than once.
 104: Bad parameter symtax

A parameter of an option contravenes the entry rules.
 105: Missing parameter "<option>"

A parameter which should be specified for an option is missing.
 106: Illegal sub option in '-l'

The '-l' suboption specification is invalid.
 108: Illegal character "<character>"

The character is not recognized as an option.
 110: Unrecognized option "<option>"

An invalid option was specified.
 111: Illegal numeric constant

The numeric value is out of range.
 112: '-r' option requires '-o' option

When the '-r' option is specified the output file must also be specified via the
'-o' option.

 113: Both '-r' and '-ng' are set.
When the '-r' option is specified the '-ng' option cannot be specified.

 Chapter 5 TULINK Error Messages

 125

 <Execution Errors>
 120: Bad object format in "<filename>" (<address>)

The input file is not of the correct object file format.
 121: Illegal processor name in "<filename>"

The object format processor name is not the specified name. This error
mainly occurs when a file of other than TULINK object file format is
specified.

 122: Illegal symbol class in "<section_name>" in "<filename>"
An invalid symbol class is present.

 123: Illegal relocation type in "<section_name>" in "<filename>"
An invalid relocation type is present.

 124: "<symbol>" from "<filename>" already bound to an output section
The symbol is already bound to an output section.

 130: Boundary "<constant>" not available in configured memory
The location attributes were different for the sections to be combined.

 131: Fail to allocate "<count>" bytes for slotvec table
Sufficient memory could not be reserved in the work area due to insufficient
memory.

 132: Malformed "<section_name>" of "<filename>"
The section format is abnormal. An attempt has been made to link the
wrong file or the file has become corrupted.

 133: Truncated "<section_name>" in "<filename>"
The file contains a truncated section.

 134: Error(s). No output written to "<filename>"
Errors occurred so no output file was created.

 139: Reloc entries out of order in "<section_name>" of "<filename>"
Relocation entries are abnormal.

 140: Can't link "<section_name>"
Cannot link this section.

 141: Run is too large and complex
Memory location failed because the location specification was too complex.

 142: Yacc stack overflow
yacc stack overflowed.

Part 5 Error Messages

126

<Command Language Errors>
 150: Syntax error

The syntax of the directive on the specified line number is incorrect.
 151: Illegal section name or memory name

Invalid memory name or section name. A number or a reserved word was
specified.

 152: Illegal address as origin or length
Invalid memory start address or length.

 153: Memory specification ignord
The MEMORY directive specification contains an error. The instruction
was ignored.

 154: Multiple reference of a input section
A single section is referenced multiple times in a SECTION directive.

 155: Illegal assignment
The assignment statement contains an error or is too complex.

 156: Semicolon required after expression
A semicolon is missing from the end of the assignment statement.

 157: Bad fill value
No padding value was specified in the -F option, or a value of two or more
bytes was specified.

 158: Multiple defined memory "<memory_name>"
The same user defined memory is defined multiple times in the MEMORY
directive.

 159: "<section_name>" can't be given an owner
The SECTION directive location address specification and output memory
specification are inconsistent.

 160: Output specification ignored
Invalid output specification in the SECTION directive. The main cause of
this error is the multiple definition or incorrect sequence in the output
specification 'org', 'align', 'len', 'addr' and 'type'.

 161: OVERLAY section must BINDed
An address specification is required for an OVERLAY section.

 Chapter 5 TULINK Error Messages

 127

 163: Statement ignored
The statement contains an error and was ignored.

 166: Section not built "<section_name>"
The output section was not created. The main cause of this error is the
inability to create the output section due to no memory area being allocated
to the output section.

 167: Missing Relocatable expression
Invalid expression. The main cause of this error is when undefined or
unresolved output sections are specified for the privileged operators org,
addr and sizeof.

 168: MEMORY segment overlap "<memory>" and "<memory>"
Memory areas specified in the MEMORY directive overlap.

 169: Illegal operator in expression
The expression contains an invalid operator.

 170: Can't set attributes "<attribute>"
The MEMORY directive contains memory attributes which cannot be
specified. The cause of this error is characters other than 'RXWI' being
specified, or one of these characters being specified more than once.

 172: Can't nest a command file
The command file is nested. Or a file other than a relocatable object file or
library file was specified in the command file specified as a parameter.

 173: Illegal expression
The expression contains an error. This error occurs in cases such as when
the expression contains the addition of two or more relative values.

5.2 TULINK Errors

 201: "<section_name>" enters unconfigured memory at "<address>"
As a result of section allocation, section <section name> was allocated in
memory which was not defined in the MEMORY directive (at <address>).
The main cause of this error is when the memory area defined by the
MEMORY directive was too small or when input section type memory was
not defined even though there was a MEMORY directive. This error usually
occurs together with Error 211.

 202: Can't link "<section_name>" with different attribute
Sections of different types (CODE, DATA) cannot be combined.

 203: Absolute sections can't in SECTIONS
Absolute sections cannot be specified in the SECTION directive.

Part 5 Error Messages

128

 205: Can't allocate '<section_name>'
The output section could not be allocated.

 206: Section "<section_name>" overlap
The section overlaps another section.

 207: Multiply defined "<symbol>" in "<filename>"
The symbol has been multiply defined.

 209: Reference made to unresolved external symbol '<symbol>'
An unresolved symbol exists.

 210: "<section_name>" at "<address>" won't fit into configured memory
The memory allocated to the output section is full.

 211: No space for "<section_name>" in "<memory_name>"
The memory allocated to the input section is full. This error usually occurs
together with Error 201.

 212: Symbol "<symbol>" attribute mismatch
An externally defined symbol or externally referenced symbol of the same
name has a different attribute.

 213: Can't find section "<section_name>"
Cannot find the input section of the specified name.

 214: "<section_name>" not yet allocated
The section is not allocated.

 216: Misuse of DOT
Invalid use of '.'.

 217: Value of "<symbol>" in "<filename>" not fit in the object code
The symbol value after relocation is outside the object code size.

 218: DSECT "<section_name>" can't be given an owner
Memory cannot be specified for a dummy section.

 219: Multiply defined output section "<section_name>"
The output section name has been multiply defined.

 220: Section "<section_name>" is too big
The input section size is too large.

 226: Can't allocate "<section_name>" to "<memory_name>"
Cannot allocate memory in accordance with section attributes.

 227: Attributes are mismatch between section and memory
The section and its allocated memory have different attributes.

 228: Illegal padding
Padding was performed on an area which cannot be padded. Padding can
only be performed on memory areas which have I attributes.

 Chapter 5 TULINK Error Messages

 129

 229: Making aux entry "<number>" for "<symbol>" out of sequence
Auxiliary information was not created correctly.

 231: Section "<section_name>" at "<address>" load value overflow.
Truncated
The output section relocation value does not fit in the object specified size.
The higher order byte is discarded.

 232: Symbol "<symbol>" size mismatch
The extern declaration size and public declaration size are different.

 233: Section "<section_name>" at "<address>" attempt to divide by zero
A divide by zero occurred at location "<address>" in "<section>".

 234: Can’t allocate medium sections(Small Data Area)
The link command file does not have DATA.M or ROMDTA.M attribute
memory
defined in it. For sections that have DATA.M or ROMDTA.M attribute
to be located in memory, the link command file must have memory that
bears DATA.M or ROMDTA.M attribute defined in it.

 235: Medium section("<section_name>") must be allocated fromt
"<address1>" to "<address2>"
Sections that have DATA.M or ROMDTA.M attribute must be located in
areas represented by <address 1> to <address 2>.

 236: Medium memory (Small Data Area) too big, maximum 64k bytes
Sections to be located in memory that bears DATA.M or ROMDTA.M
attribute must be located within 64 Kbytes beginning with the start
address whichever lower (smaller).

5.3 TULINK Warning Errors

 500: Absolute symbol "<symbol>" being redefined
An absolute symbol was redefined.

 501: Symbol "<symbol>" from file "<filename>" being redefined
A symbol was redefined.

 504: Multiply defined symbol "<symbol>" from file "<filename>" has more
than one size
A symbol was multiply defined. The previous definition was for a different
size.

 505: "<number>" is not a power of 2
The align operator parameter is not a power of two.

Part 5 Error Messages

130

 509: Useless MEMORY specification with '-r' option
The MEMORY directive was ignored because the '-r' option (create a
relocatable output file) was specified.

 511: Unresolved external symbol "<symbol>"
An unresolved external symbol was found.

 512: Duplicate execute address definition
An execution address has been specified more than once. The first
specification will be used.

 513: Section "<section_name>" size lager than definition
The output section size exceeds the size specified in the command language.

 514: All input files are LIBRARY files no processor name exist
As only library files were specified as input files the processor name could
not be obtained.

 515: Value is used what defined at "<filename>" as symbol "<symbol>"
The symbol is multiply defined. This message is output together with Error
207. The value of "<symbol>" specified in "<filename>" is used.

 516: Value is used what lastly defined at CLF as symbol "<symbol>"
The symbol is multiply defined. This message is output together with
Warning 500 and Warning 501. The value from the last specification of
"<symbol>" in the command language file is used.

 517: Useless symbol definition with '-r' option
An assignment statement is defined in incremental linking.

 518: Illigal parameter
An illegal option is specified.

 520: The predefined memory is overlapped "<memory_name>"
The pre defined memory is multiply defined or overlapped.

 522: No debug information exist in <input_filename>
There is no debug information data in the specified file.

 523: Starting address of CODE or ROMDATA area is specified in ‘addr’
The start address "addr" in the link command file is that of the CODE or
ROMDATA area.

 524: CODE or ROMDATA section is allocated in DATA area with ‘org’
The input section of the CODE or ROMDATA type was allocated in the
DATA area after specifying its address by org of the link command file.

 525: Size attributes between input section and ‘addr’ are mismatch
The size attribute of the input section does not match that of the area whose
start address is indicated by addr.

 Chapter 6 TUMPP Error Messages

 131

Chapter 6 TUMPP Error Messages

6.1 TUMPP Fatal Errors

 <Command Line>
 001: Invalid option '<option name>'

Invalid option is specified.
 002: Unable to open option file <filename>

Option file cannot be opened.
 003: Unable to open input file <filename>

The input file cannot be opened.
 004: Unable to open output file <filename>

The output file cannot be opened.
 005: Unable to open error output file <filename>

The error output file cannot be opened.
 006: Unable to open list file <filename>

The list file cannot be opened.
 007: Symbol not specified with '<option name>' option

Symbol is not specified after -D or -S option.
 009: Command line characters exceed maximum limit

The number of characters of command line exceeds maximum limit.
 010: Same filename <filename> specified

The same filename is specified.
 011: Filename not specified with '<option name>' option

Filename has not been specified with given option.
 012: Source file not specified

Source filename has not been specified.
 015: '<option name>' filename exceeds maximum limit

The number of arguments of -e, -f, -mf, -GN option exceeds maximum
limit.

 016: '<option name>' path name exceeds maximum limit
The argument length of option argument exceeds maximum limit.

 017: Source filename exceeds maximum limit
The input filename length exceeds maximum limit.

 018: Output filename exceeds maximum limit
The output filename length exceeds maximum limit.

 020: The parameter of option '<option name>' is not specified
Argument is needed for <option name>.

Part 5 Error Messages

132

 <General>
 040: Total number of characters in the line exceeds maximum limit

The number of characters of a line exceeds maximum limit.
 041: Number of source lines exceeds limit

The number of lines which includes included file exceeds maximum limit.
 042: Out of memory

Memory area cannot be allocated.

 <Preprocessor>
 080: '#endif' expected

Before terminating an #if, #ifdef or #ifndef directive with a #endif directive,
end of file was found.

 081: '#ifdef/#ifndef' expects an identifier
An identifier must be specified with the #ifdef or #ifndef directive.

 082: Too many macro definitions
The number of macro definitions exceeds maximum limit.

 083: Too many nested '#if'
The number of nesting levels for #if directive exceeds maximum limit.

 084: Too many nested include files
The number of nested #include files exceeds maximum limit.

 085: Unable to open include file <filename>
The filename which is specified as #include cannot be opened.

 086: Unexpected '<reserved word>'
#else, #elseif, #endif is specified at illegal place.

 087: '#line' filename exceeds maximum limit
The length of filename of #line exceeds maximum limit.

 088: '#error' message text exceeds maximum limit
The length of message of #error exceeds maximum limit.

 <Macroprocessor>
 None.

 <Lexical>
 160: Unexpected EOF in block comment

EOF occurs in block comment.

 Chapter 6 TUMPP Error Messages

 133

6.2 TUMPP Errors

 <Command Line>
 None.

 <General>
 240: Syntax error

An invalid syntax has been specified.
 241: Number is invalid

The number is not specified at the place where the number is specified.
 242: Right operand of shift operator has negative value

Right operand of shift operator has negative value.
 243: Division/Remainder by zero

Divisor or Remainder is 0, while evaluating constant expression.
 244: Too many characters in a character constant

Character constant has more than 4 characters.
 245: No character in a character constant

No character is specified as character constant.
 246: Illegal expression

Invalid expression is specified.

 <Preprocessor>
 280: '#include' filename exceeds maximum limit

The length of filename specified with #include exceeds maximum limit.
 281: Syntax error in '#define'

The syntax of #define directive is not correct.
 282: '##' cannot occur at the beginning of a macro definition

A macro definition cannot begin with a token pasting operator (##), since a
token pasting operator requires two tokens, one before it and one after it.

 283: '##'cannot occur at the end of a macro definition
A macro definition cannot end with a token pasting operator (##), since a
token pasting operator requires two tokens, one before it and one after it.

 284: Formal parameter missing after '#'
The token following a stringizing operator (#) must be a parameter.

 285: #error : <string>
TUMPP has encountered #error directive and has displayed the given
message <string>.

 286: Invalid line number for '#line'

Part 5 Error Messages

134

The #line directive encounters a invalid line number.
 287: '#line' expects string as filename

The #line directive is not specified with required filename specification.
 288: '#undef' expect an identifier

Macro name is not specified in the #undef directive.
 289: Unexpected end of line

Unexpected end of line encounters. Correspondence of parenthesis may be
not correct.

 290: '#include' expect a filename
An #include directive is not specified with required filename specification.

 291: Too many parameters for macro
The number of parameters exceeds maximum limit.

 292: Too many or too few actual arguments in macro call <symbol>
The number of arguments does not accord with parameters.

 293: Redefinition of the reserved symbol '<reserved word>'
Reserved word cannot be redefined.

 294: Redefinition of the predefined symbol '<reserved word>'
Predefined symbol cannot be redefined.

 295: Redefinition of parameter name <parameter>
The parameter names cannot be used.

 296: Unable to use '#undef' for the reserved symbol '<reserved word>'
Reserved word cannot be undefined.

 297: Unable to use '#undef' for the predefined symbol '<reserved word>'
Predefined symbol cannot be undefined.

 <Macroprocessor>
 320: Too many local symbols or labels for macro

The number of local symbols or labels exceeds maximum limit.
 321: Redefinition of symbol <symbol>

Symbol has been already defined.
 322: '<reserved word>' is a reserved word

Reserved word has been specified for definition.
 323: Redefinition of parameter name <parameter>

There are duplicate arguments.
 324: Redefinition of local symbol name or label name <symbol>

There are duplicate local symbols or labels.
 325: Macro function nest overflow

Number of nesting levels exceeds the maximum limit.

 Chapter 6 TUMPP Error Messages

 135

 326: Too many parameters for macro
The number of parameters exceeds maximum limit.

 327: Too many or too few actual arguments in macro call <symbol>
Number of arguments specified in the macro call is more than or less than
the number of arguments specified in the definition.

 328: Reserved word '<reserved word>' is not made a parameter
Reserved word cannot be specified as a parameter.

 329: Reserved word '<reserved word>' is not made a local symbol or a label
Reserved word cannot be specified as a local symbol or a label.

 330: Macro call <symbol> should be in a new line
Macro call has not been specified in the new line.

 331: Repeat value <expression> out of range
Value of the expression specified for ?repeat function is out of the range.

 332: Macro function <symbol> should be in a new line
Macro definition has not been specified in the new line.

 333: Valid trigger character expected
Trigger character specified is not a valid trigger character.

 334: '?elseif' after '?else'
?elseif keyword used after ?else .

 335: '?else' after '?else'
?else statement used multiple times for a ?if .

 336: '?elseif/?else' without '?if'
?elseif or ?else keyword used without previously using ?if .

 337: '?endif' without '?if'
?endif specified without specifying ?if .

 338: '?restrict_macro' has already been specified
The ?restrict_macro has been specified more than once.

 339: '?endres' has been specified without '?restrict_macro'
?endres can be specified only after a ?restict_macro has been specified.

 340: '?endres' has not been specified
?endres has not been specified after ?restict_macro.

 341: Unable to use architecture specific function '<macro function>'
Invalid function is used.

 342: Unexpected '?delayslot' is specified
?delayslot cannot be used at specified place.

 343: Number of macro expansion exceeds maximum limit
Number of macro expansion exceeds maximum limit.

 344: No identifier after the trigger character

Part 5 Error Messages

136

Trigger character needs identifier after it.
 345: Unexpected identifier <symbol> is specified after the trigger character

Invalid identifier is specified after trigger character.

 <Lexical>
 None.

6.3 TUMPP Warning Errors

 <Command Line>
 500: Extra source file ignored

Only one source file can be specified.
 501: Duplicate options '<option name>' have been specified, only the first

option is valid
A command line option has been specified twice. As specifying duplicate
command line option is not valid, only the first option specified is
considered valid and the second option is ignored.

 502: Option '<option name>' conflicts with '<option name>', first option is
valid
Two conflicting command line options have been specified. As specifying
conflicting command line option is not valid, only the first option specified
is considered valid and the second option is ignored.

 503: '<option name>' is ignored because list option is not given
Option is ignored because list file option is not set.

 <General>
 540: Expression greater than 32bit length, excess ignored

The value of expression is overflow.
 541: Decimal number has octal prefix

Octal number includes 8 or 9. Or decimal number starts with 0.

 <Preprocessor>
 580: Unexpected characters following directive '<directive>'

Extra characters are found after processing a preprocessor <directive>.
 581: Macro <symbol> redefined

The given macro identifier is defined more than once.
 582: Length of the replacement text exceeds maximum limit, excess truncated

The number of characters in the replacement string of the preprocessor
directive #define exceeds the maximum limit.

 Chapter 6 TUMPP Error Messages

 137

 <Macroprocessor>
 None.
 <Lexical>
 660: Identifier too long, excess truncated

When the identifier consist of number of characters greater than the
allowable limit.

Part 5 Error Messages

138

Chapter 7 TULIB Error Messages

7.1 TULIB Fatal Errors

 20: Can't open "<filename>"
Cannot open the specified file. Common problems are that the specified file
does not exist, there is insufficient disk space to create a new file), or that
the file is write-protected (when opened in write mode. Note that, when a
work file is specified, the file is created in the directory (drive) indicated by
the TMP environment variable.

 22: Can't read "<filename>"
Cannot read the specified file.

 23: Can't write "<filename>"
Cannot write to the specified file. The main cause of this error is that there
is insufficient space in the file. Note that, when the file is a work file, it is
created in the directory (drive) indicated by the TMP environment variable.

 24: Can't seek "<filename>"
Cannot perform a seek on the specified file.

 25: Can't creat "<filename>"
Cannot create the specified file.

 26: Can't creat temp file
Cannot create a work file.

 27: Can't open command file "<filename>"
Cannot open the specified command file. The main cause of this error is that
the file does not exist.

 28: "<filename>" is not reading permited
The specified file does not have read permission.

 29: "<filename>" is not writing permited
The specified file does not have write permission.

 30: Cannot return current directory
The directory being accessed does not exist. It is possible that the current
directory was deleted during execution.

 Chapter 7 TULIB Error Messages

 139

 <Invocation Errors>
 110: Unrecognized option "<option>"

An invalid option was specified.
 115: usage: tulib -[drtl][vuc] files..

Required command parameters were not specified.
 116: One of [drtl] must be specified

A required option was not specified. One of the options d, t, r and l must be
specified.

 117: Only one of [drtl] allowed
Incompatible options were specified. No more than one of the options d, t, r
and l can be specified at one time.

 118: Cannot use option in commandfile
An option which cannot be used in a command file was specified.

 119: Target processer is different
The object files or library files target processor families do not match. For
example, this error occurs when a TLCS-870 object is added to a TLCS-900
library file.

 125: Option '-r' is libraryfile or objectfile
 126: "<filename>" not in library format

The specified file is not in library format. The main cause of this error is
specifying a non-library file as a library file.

 127: "<filename>" internal header generation error
An internal header error occurred in the specified file.

 135: Dynamic storage allocation failure
Working memory could not be reserved. Divide the library files into smaller
files and retry or increase the amount of memory.

 136: Time of "<filename>" is broken
The time read from the specified file is incorrect. The file contents are
invalid, so recompile or reassemble is required.

 174: Cannot appoint module of "<module_name>"
An object file cannot specify a module. Object files must specify modules
by file name rather than by module name.

Part 5 Error Messages

140

7.2 TULIB Errors

 240: Cannot open "<filename>"
Cannot open the specified file.

 241: "<filename>" not found
Cannot find the specified file.

 243: Status of objectfile is ERROR
The execution status of the specified object file is ERROR.

 244: Status of objectfile is WARNING
The execution status of the specified object file is WARNING.

 245: "<module>" does not exist in library file
The specified module does not exist in the library file.

 246: "<filename>" is not reading permited
The specified file does not have read permission.

 247: "<filename>" is not writing permited
The specified file does not have write permission.

 248: Cannot make library file without module
A module was not specified. A library file cannot be created without a
module.

 249: Cannot appoint Library file
Cannot recognize as a library file. The main cause of this error is specifying
a non-library file as a library file.

 250: "<filename>" is not an object file
The specified file is not an object file. The main cause of this error is
specifying a non-object file as an object file.

 Chapter 8 TUCONV Error Messages

 141

Chapter 8 TUCONV Error Messages

8.1 TUCONV Fatal Errors

 <I/O Errors>
 20: Can't open "<filename>"

Cannot open the specified file. Common problems are that the specified file
does not exist, there is insufficient disk space to create a new file, or that the
file is write-protected (when opened in write mode). Note that, when a work
file is specified, the file is created in the directory (drive) indicated by the
TMP environment variable.

 21: Can't close "<filename>"
Cannot close the specified file.

 22: Can't read "<filename>"
Cannot read the specified file.

 23: Can't write "<filename>"
Cannot write to the specified file. The main cause of this error is that there
is insufficient space for the file. Note that, when the file is a workig file, it is
created in the directory (drive) indicated by the TMP environment variable.

 24: Can't seek "<filename>"
Cannot perform a seek on the specified file.

 <Invocation Errors>
 100: No source file found in invocation

No source file was specified in the startup command.
 101: Illegal file specification

The file specification contravenes the rules.
 102: File must be a disk

You cannot specify a file other than a disk file. CON, PRN, AUX, COM1,
and COM2 have specific meanings under OS and cannot be specified.

 103: "filename" files are the same
The same filename was specified more than once.

 104: Duplicated source file name
The same source file name has been defined.

 105: Bad parameter syntax
A parameter of an option is used incorrectly.

 106: Missing parameter "<option>"
A parameter required for an option was missing.

Part 5 Error Messages

142

 107: Illegal sub option
The suboption specification is invalid.

 108: Not parameter allowed
A parameter was specified for an option which does not take parameters.

 109: Unrecognized option "<option>"
An invalid option was specified.

 110: Can't nest a command file
The command file is nested.

 111: Not supported option "<option>"
Unsupported option(-r, -n, -p) is specified.

 112: Illegal output file "<filename>"
Wrong output file name specified. When -P option is used with -ra or -rb
option, the output file name must conform to any file name specified with
 -ra or -rb option.

 113: Illegal numeric constant
Wrong numeric value specified.

 114: Ambiguous point in block definition
The block specified with -ra option has ambiguous points. The block
specified range may include multiple sections. In this case, the specified
with -rb option is valid.

 115: Can't find section "<section_name>"
No section specified with -rb option.

 116: Can't find section "<section_name>"
No object within the range specified by "-ra" option.

 150: Not an absolute object format
The input is not in absolute object format.

 151: Bad object format
The object format of the input file is invalid.

 152: Too large address
An address in the input file exceeds the upper address limit for the specified
format. Otherwise, the address specified with -ra or -rb option has minus
value.

 153: Load address overflow
An address exceeded the upper address limit for the specified format.

 154: Out of memory
Working memory is insufficient. Increase the amount of memory.

 Chapter 8 TUCONV Error Messages

 143

 155: Address overlap in "<filename>"
Address specification overlaps in the output range.

8.2 TUCONV Warning Errors

 500: Illegal character in Comment
A comment contains an invalid character.

 501: Comment too long
A comment is too long.

 515: Illegal parameter
An invalid parameter.

 516: Ignored option "<option>"
Ignored option specification

Part 5 Error Messages

144

Appendix

 Appendix A System Flow

 147

Appendix A System Flow

C source program
(.c)

Source program with
macro language

(.mac)

Assembly source
program file

(.asm)

Assembly source
program file

(.asm)

Relocatable object
(.rel)

Link command file
(.lcf) Library

(.lib)

Map file
(.map)

Absolute object file
(.abs)

iHEX
object file

(.hXX)

S-Format
object file

(.sXX)

C compiler
cc870c

Macro Preprocessor
tumpp

Assembler
asm870c

Librarian
tulib

Linker
tulink

Object converter
tuconv

Assembler listing
file

(.lst)

Appendix

148

Appendix B History
The history of this manual is the following.

Issue Date Update
1st Nov 1, 2002 1'st Edition
2nd Nov 24, 2003 Deleted Built-in-function

Deleted MAC Driver
Fixed miss-spelling

3rd Nov 1, 2004 Deleted C-Like Compiler
Fixed miss-spelling

4th Jun 5, 2007 Deleted Tumpl
Deleted Tuapp
Deleted Tufal
Added Tumpp
Added TLCS-870/C1 specifications
Fixed miss-spelling

 Appendix B History

 149

 TLCS-870 Family Language Tools Operation Guide [4th Edition]

The Date of Issue: 5 Jun, 2007

TDE94-04

	TLCS-870 Family Language
Tools Operation Guide
	Contents

	Part 1 Getting Started
	Chapter 1 Setting Up Execution Environment

	Part 2 Tools
	Chapter 1 CC Driver
	1.1 Introduction
	1.2 Startup command
	 1.3 Input Files
	 1.4 Output files
	1.5 List of Options
	 1.6 Example Commands

	 Chapter 2 Assembler
	2.1 Introduction
	2.2 Startup command
	2.3 Input Files
	2.4 Output Files
	 2.5 List of Options
	2.6 Example Commands

	 Chapter 3 Linker
	3.1 Introduction
	3.2 Startup command
	3.3 Input Files
	3.4 Output Files
	 3.5 List of Options
	3.6 Example Commands

	 Chapter 4 Macro Preprocessor
	4.1 Introduction
	4.2 Startup command
	4.3 Input Files
	 4.4 Output Files
	4.5 List of Options
	 4.6 Example Commands

	 Chapter 5 Librarian
	5.1 Introduction
	5.2 Startup command
	 5.3 Input Files
	5.4 Output Files
	5.5 List of Options
	 5.6 Example Commands

	 Chapter 6 Object Converter
	6.1 Introduction
	6.2 Startup command
	6.3 Input Files
	 6.4 Output Files
	6.5 List of Options
	 6.6 Example Commands

	Part 3 Option Details
	Chapter 1 Rules for Specifying Options
	 Chapter 2 Conventions Used in Option Descriptions
	 Chapter 3 Details of Options

	Part 4 Formats
	Chapter 1 Assembler List Format
	1.1 Assemble List
	 1.2 Symbol List Format

	 Chapter 2 Linker List Format
	 Chapter 3 Object Format
	3.1 Intel Format
	 3.2 Motorola S Format

	Part 5 Error Messages
	Chapter 1 Error Messages
	1.1 Types of Error Message
	1.2 Error Message Format

	 Chapter 2 Driver Error Messages
	2.1 Fatal Errors of Drivers
	 2.2 Warning Errors of Drivers

	Chapter 3 C Compiler Error Messages
	3.1 Fatal Errors of C Compilers
	3.2 Errors of C Compilers
	3.3 Warnings of C Compiler

	 Chapter 4 Assembler Error Messages
	4.1 Assembler Fatal Errors
	4.2 Assembler Errors
	4.3 Assembler Warning Errors

	Chapter 5 TULINK Error Messages
	5.1 TULINK Fatal Errors
	5.2 TULINK Errors
	5.3 TULINK Warning Errors

	 Chapter 6 TUMPP Error Messages
	6.1 TUMPP Fatal Errors
	6.2 TUMPP Errors
	6.3 TUMPP Warning Errors

	 Chapter 7 TULIB Error Messages
	7.1 TULIB Fatal Errors
	 7.2 TULIB Errors

	 Chapter 8 TUCONV Error Messages
	8.1 TUCONV Fatal Errors
	8.2 TUCONV Warning Errors

	Appendix
	Appendix A System Flow
	 Appendix B History

